Department of Physics, Harvard University, Cambridge, United States.
Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
Elife. 2022 Jul 25;11:e75458. doi: 10.7554/eLife.75458.
During eukaryotic cell division, chromosomes are linked to microtubules (MTs) in the spindle by a macromolecular complex called the kinetochore. The bound kinetochore microtubules (KMTs) are crucial to ensuring accurate chromosome segregation. Recent reconstructions by electron tomography (Kiewisz et al., 2022) captured the positions and configurations of every MT in human mitotic spindles, revealing that roughly half the KMTs in these spindles do not reach the pole. Here, we investigate the processes that give rise to this distribution of KMTs using a combination of analysis of large-scale electron tomography, photoconversion experiments, quantitative polarized light microscopy, and biophysical modeling. Our results indicate that in metaphase, KMTs grow away from the kinetochores along well-defined trajectories, with the speed of the KMT minus ends continually decreasing as the minus ends approach the pole, implying that longer KMTs grow more slowly than shorter KMTs. The locations of KMT minus ends, and the turnover and movements of tubulin in KMTs, are consistent with models in which KMTs predominately nucleate de novo at kinetochores in metaphase and are inconsistent with substantial numbers of non-KMTs being recruited to the kinetochore in metaphase. Taken together, this work leads to a mathematical model of the self-organization of kinetochore-fibers in human mitotic spindles.
在真核细胞分裂过程中,染色体通过一个称为动粒的大分子复合物与纺锤体中的微管(MTs)相连。结合的动粒微管(KMTs)对于确保染色体的准确分离至关重要。最近通过电子断层扫描(Kiewisz 等人,2022 年)重建的人类有丝分裂纺锤体中的每根 MT 的位置和构型,揭示了这些纺锤体中大约一半的 KMT 没有到达极。在这里,我们使用大规模电子断层扫描分析、光转化实验、定量偏振光显微镜和生物物理建模的组合来研究导致这种 KMT 分布的过程。我们的结果表明,在中期,KMT 沿着明确定义的轨迹远离动粒生长,随着 KMT 末端接近极,KMT 末端的速度不断降低,这意味着较长的 KMT 比较短的 KMT 生长得更慢。KMT 末端的位置以及 KMT 中微管蛋白的周转率和运动与 KMT 主要在中期从动粒中从头开始核的模型一致,与大量非 KMT 在中期被招募到动粒的模型不一致。综上所述,这项工作导致了人类有丝分裂纺锤体中动粒纤维的自组织的数学模型。