Suppr超能文献

硅纳米结构中高磷浓度的热力学稳定性

Thermodynamic stability of high phosphorus concentration in silicon nanostructures.

作者信息

Perego Michele, Seguini Gabriele, Arduca Elisa, Frascaroli Jacopo, De Salvador Davide, Mastromatteo Massimo, Carnera Alberto, Nicotra Giuseppe, Scuderi Mario, Spinella Corrado, Impellizzeri Giuliana, Lenardi Cristina, Napolitani Enrico

机构信息

Laboratorio MDM, IMM-CNR, Via Olivetti 2, I-20864 Agrate Brianza, Italy.

出版信息

Nanoscale. 2015 Sep 14;7(34):14469-75. doi: 10.1039/c5nr02584b.

Abstract

Doping of Si nanocrystals (NCs) has been the subject of a strong experimental and theoretical debate for more than a decade. A major difficulty in the understanding of dopant incorporation at the nanoscale is related to the fact that theoretical calculations usually refer to thermodynamic equilibrium conditions, whereas, from the experimental point of view, impurity incorporation is commonly performed during NC formation. This latter circumstance makes impossible to experimentally decouple equilibrium properties from kinetic effects. In this report, we approach the problem by introducing the dopants into the Si NCs, from a spatially separated dopant source. We induce a P diffusion flux to interact with the already-formed and stable Si NCs embedded in SiO2, maintaining the system very close to the thermodynamic equilibrium. Combining advanced material synthesis, multi-technique experimental quantification and simulations of diffusion profiles with a rate-equation model, we demonstrate that a high P concentration (above the P solid solubility in bulk Si) within Si NCs embedded in a SiO2 matrix corresponds to an equilibrium property of the system. Trapping within the Si NCs embedded in a SiO2 matrix is essentially diffusion limited with no additional energy barrier, whereas de-trapping is prevented by a binding energy of 0.9 eV, in excellent agreement with recent theoretical findings that highlighted the impact of different surface terminations (H- or O-terminated NCs) on the stability of the incorporated P atoms.

摘要

十多年来,硅纳米晶体(NCs)的掺杂一直是激烈的实验和理论争论的主题。在纳米尺度上理解掺杂剂掺入的一个主要困难与以下事实有关:理论计算通常涉及热力学平衡条件,而从实验角度来看,杂质掺入通常在纳米晶体形成过程中进行。后一种情况使得无法通过实验将平衡性质与动力学效应分离。在本报告中,我们通过从空间分离的掺杂剂源将掺杂剂引入硅纳米晶体来解决这个问题。我们诱导磷扩散通量与嵌入二氧化硅中的已形成且稳定的硅纳米晶体相互作用,使系统非常接近热力学平衡。结合先进的材料合成、多技术实验定量以及用速率方程模型对扩散分布进行模拟,我们证明嵌入二氧化硅基质中的硅纳米晶体中的高磷浓度(高于磷在块状硅中的固溶度)对应于系统的平衡性质。被困在嵌入二氧化硅基质中的硅纳米晶体中的过程本质上受扩散限制,没有额外的能垒,而脱陷则被0.9电子伏特的结合能阻止,这与最近强调不同表面终止(氢或氧终止的纳米晶体)对掺入的磷原子稳定性影响的理论发现非常一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验