Bartelli Nicholas L, Hazelbauer Gerald L
Department of Biochemistry, University of Missouri Columbia, 117 Schweitzer Hall, Missouri, 65211.
Protein Sci. 2015 Nov;24(11):1764-76. doi: 10.1002/pro.2767. Epub 2015 Aug 25.
Cytoplasmic domains of transmembrane bacterial chemoreceptors are largely extended four-helix coiled coils. Previous observations suggested the domain was structurally dynamic. We probed directly backbone dynamics of this domain of the transmembrane chemoreceptor Tar from Escherichia coli using site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy. Spin labels were positioned on solvent-exposed helical faces because EPR spectra for such positions reflect primarily polypeptide backbone movements. We acquired spectra for spin-labeled, intact receptor homodimers solubilized in detergent or inserted into native E. coli lipid bilayers in Nanodiscs, characterizing 16 positions distributed throughout the cytoplasmic domain and on both helices of its helical hairpins, one amino terminal to the membrane-distal tight turn (N-helix), and the other carboxyl terminal (C-helix). Detergent solubilization increased backbone dynamics for much of the domain, suggesting that loss of receptor activities upon solubilization reflects wide-spread destabilization. For receptors in either condition, we observed an unanticipated difference between the N- and C-helices. For bilayer-inserted receptors, EPR spectra from sites in the membrane-distal protein-interaction region and throughout the C-helix were typical of well-structured helices. In contrast, for approximately two-thirds of the N-helix, from its origin as the AS-2 helix of the membrane-proximal HAMP domain to the beginning of the membrane-distal protein-interaction region, spectra had a significantly mobile component, estimated by spectral deconvolution to average approximately 15%. Differential helical dynamics suggests a four-helix bundle organization with a pair of core scaffold helices and two more dynamic partner helices. This newly observed feature of chemoreceptor structure could be involved in receptor function.
跨膜细菌化学感受器的细胞质结构域主要是延伸的四螺旋卷曲螺旋结构。先前的观察表明该结构域在结构上是动态的。我们使用定点自旋标记和电子顺磁共振(EPR)光谱法直接探测了大肠杆菌跨膜化学感受器Tar的该结构域的主链动力学。自旋标记位于溶剂暴露的螺旋面上,因为这些位置的EPR光谱主要反映多肽主链的运动。我们获得了在去污剂中溶解或插入纳米盘中的天然大肠杆菌脂质双层中的自旋标记完整受体同二聚体的光谱,表征了分布在整个细胞质结构域及其螺旋发夹的两个螺旋上的16个位置,一个位于膜远端紧密转角的氨基末端(N螺旋),另一个位于羧基末端(C螺旋)。去污剂溶解增加了该结构域大部分区域的主链动力学,这表明溶解后受体活性的丧失反映了广泛的不稳定。对于处于任何一种条件下的受体,我们观察到N螺旋和C螺旋之间存在意外差异。对于双层插入的受体,膜远端蛋白质相互作用区域和整个C螺旋位点的EPR光谱是结构良好的螺旋的典型光谱。相比之下,对于大约三分之二的N螺旋,从其作为膜近端HAMP结构域的AS-2螺旋的起始位置到膜远端蛋白质相互作用区域的开始,光谱具有明显的可移动成分,通过光谱去卷积估计平均约为15%。不同的螺旋动力学表明四螺旋束结构由一对核心支架螺旋和另外两个动态伙伴螺旋组成。这种新观察到的化学感受器结构特征可能与受体功能有关。