Suppr超能文献

基于部分观测的研究内样本协方差矩阵的多元元回归的贝叶斯推断

Bayesian Inference for Multivariate Meta-regression with a Partially Observed Within-Study Sample Covariance Matrix.

作者信息

Yao Hui, Kim Sungduk, Chen Ming-Hui, Ibrahim Joseph G, Shah Arvind K, Lin Jianxin

机构信息

Financial Services Office, Ernst & Young, New York, NY, USA.

Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Rockville, MD, USA.

出版信息

J Am Stat Assoc. 2015 Jun;110(510):528-544. doi: 10.1080/01621459.2015.1006065.

Abstract

Multivariate meta-regression models are commonly used in settings where the response variable is naturally multi-dimensional. Such settings are common in cardiovascular and diabetes studies where the goal is to study cholesterol levels once a certain medication is given. In this setting, the natural multivariate endpoint is Low Density Lipoprotein Cholesterol (LDL-C), High Density Lipoprotein Cholesterol (HDL-C), and Triglycerides (TG) (LDL-C, HDL-C, TG). In this paper, we examine study level (aggregate) multivariate meta-data from 26 Merck sponsored double-blind, randomized, active or placebo-controlled clinical trials on adult patients with primary hypercholesterolemia. Our goal is to develop a methodology for carrying out Bayesian inference for multivariate meta-regression models with study level data when the within-study sample covariance matrix for the multivariate response data is partially observed. Specifically, the proposed methodology is based on postulating a multivariate random effects regression model with an unknown within-study covariance matrix Σ in which we treat the within-study sample correlations as missing data, the standard deviations of the within-study sample covariance matrix are assumed observed, and given Σ, follows a Wishart distribution. Thus, we treat the off-diagonal elements of as missing data, and these missing elements are sampled from the appropriate full conditional distribution in a Markov chain Monte Carlo (MCMC) sampling scheme via a novel transformation based on partial correlations. We further propose several structures (models) for Σ, which allow for borrowing strength across different treatment arms and trials. The proposed methodology is assessed using simulated as well as real data, and the results are shown to be quite promising.

摘要

多变量元回归模型通常用于响应变量自然是多维的情况。这种情况在心血管和糖尿病研究中很常见,其目标是在给予某种药物后研究胆固醇水平。在这种情况下,自然的多变量终点是低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)和甘油三酯(TG)(LDL-C、HDL-C、TG)。在本文中,我们研究了默克公司赞助的26项针对原发性高胆固醇血症成年患者的双盲、随机、活性或安慰剂对照临床试验的研究水平(汇总)多变量元数据。我们的目标是开发一种方法,用于在多变量响应数据的研究内样本协方差矩阵部分可观测时,对具有研究水平数据的多变量元回归模型进行贝叶斯推断。具体而言,所提出的方法基于假设一个具有未知研究内协方差矩阵Σ的多变量随机效应回归模型,在该模型中,我们将研究内样本相关性视为缺失数据,假设研究内样本协方差矩阵的标准差是可观测的,并且给定Σ时, 服从威沙特分布。因此,我们将 的非对角元素视为缺失数据,并且这些缺失元素在马尔可夫链蒙特卡罗(MCMC)抽样方案中通过基于偏相关的新颖变换从适当的全条件分布中进行抽样。我们还为Σ提出了几种结构(模型),这些结构允许在不同治疗组和试验之间借用强度。使用模拟数据和实际数据对所提出的方法进行了评估,结果显示很有前景。

相似文献

5
Bayesian multivariate skew meta-regression models for individual patient data.贝叶斯多元偏斜个体患者数据荟萃回归模型。
Stat Methods Med Res. 2019 Oct-Nov;28(10-11):3415-3436. doi: 10.1177/0962280218801147. Epub 2018 Oct 12.

引用本文的文献

本文引用的文献

3
Bayesian multivariate meta-analysis with multiple outcomes.贝叶斯多元荟萃分析与多个结局。
Stat Med. 2013 Jul 30;32(17):2911-34. doi: 10.1002/sim.5745. Epub 2013 Feb 6.
9
Multivariate meta-analysis: potential and promise.多变量荟萃分析:潜力与前景。
Stat Med. 2011 Sep 10;30(20):2481-98. doi: 10.1002/sim.4172. Epub 2011 Jan 26.
10
Modeling Covariance Matrices via Partial Autocorrelations.通过偏自相关对协方差矩阵进行建模。
J Multivar Anal. 2009 Nov 1;100(10):2352-2363. doi: 10.1016/j.jmva.2009.04.015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验