Yao Hui, Kim Sungduk, Chen Ming-Hui, Ibrahim Joseph G, Shah Arvind K, Lin Jianxin
Financial Services Office, Ernst & Young, New York, NY, USA.
Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Rockville, MD, USA.
J Am Stat Assoc. 2015 Jun;110(510):528-544. doi: 10.1080/01621459.2015.1006065.
Multivariate meta-regression models are commonly used in settings where the response variable is naturally multi-dimensional. Such settings are common in cardiovascular and diabetes studies where the goal is to study cholesterol levels once a certain medication is given. In this setting, the natural multivariate endpoint is Low Density Lipoprotein Cholesterol (LDL-C), High Density Lipoprotein Cholesterol (HDL-C), and Triglycerides (TG) (LDL-C, HDL-C, TG). In this paper, we examine study level (aggregate) multivariate meta-data from 26 Merck sponsored double-blind, randomized, active or placebo-controlled clinical trials on adult patients with primary hypercholesterolemia. Our goal is to develop a methodology for carrying out Bayesian inference for multivariate meta-regression models with study level data when the within-study sample covariance matrix for the multivariate response data is partially observed. Specifically, the proposed methodology is based on postulating a multivariate random effects regression model with an unknown within-study covariance matrix Σ in which we treat the within-study sample correlations as missing data, the standard deviations of the within-study sample covariance matrix are assumed observed, and given Σ, follows a Wishart distribution. Thus, we treat the off-diagonal elements of as missing data, and these missing elements are sampled from the appropriate full conditional distribution in a Markov chain Monte Carlo (MCMC) sampling scheme via a novel transformation based on partial correlations. We further propose several structures (models) for Σ, which allow for borrowing strength across different treatment arms and trials. The proposed methodology is assessed using simulated as well as real data, and the results are shown to be quite promising.
多变量元回归模型通常用于响应变量自然是多维的情况。这种情况在心血管和糖尿病研究中很常见,其目标是在给予某种药物后研究胆固醇水平。在这种情况下,自然的多变量终点是低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)和甘油三酯(TG)(LDL-C、HDL-C、TG)。在本文中,我们研究了默克公司赞助的26项针对原发性高胆固醇血症成年患者的双盲、随机、活性或安慰剂对照临床试验的研究水平(汇总)多变量元数据。我们的目标是开发一种方法,用于在多变量响应数据的研究内样本协方差矩阵部分可观测时,对具有研究水平数据的多变量元回归模型进行贝叶斯推断。具体而言,所提出的方法基于假设一个具有未知研究内协方差矩阵Σ的多变量随机效应回归模型,在该模型中,我们将研究内样本相关性视为缺失数据,假设研究内样本协方差矩阵的标准差是可观测的,并且给定Σ时, 服从威沙特分布。因此,我们将 的非对角元素视为缺失数据,并且这些缺失元素在马尔可夫链蒙特卡罗(MCMC)抽样方案中通过基于偏相关的新颖变换从适当的全条件分布中进行抽样。我们还为Σ提出了几种结构(模型),这些结构允许在不同治疗组和试验之间借用强度。使用模拟数据和实际数据对所提出的方法进行了评估,结果显示很有前景。