Suppr超能文献

使用重尾随机效应和缺失样本量的贝叶斯元回归模型用于自疏元数据。

Bayesian Meta-Regression Model Using Heavy-Tailed Random-effects with Missing Sample Sizes for Self-thinning Meta-data.

作者信息

Ma Zhihua, Chen Ming-Hui, Tang Yi

机构信息

Department of Statistics, School of Economics, Shenzhen University, Shenzhen, China.

Department of Statistics, University of Connecticut, Storrs, CT, USA.

出版信息

Stat Interface. 2020;13(4):437-447. doi: 10.4310/sii.2020.v13.n4.a2. Epub 2020 Jul 31.

Abstract

Motivated by the self-thinning meta-data, a random-effects meta-analysis model with unknown precision parameters is proposed with a truncated Poisson regression model for missing sample sizes. The random effects are assumed to follow a heavy-tailed distribution to accommodate outlying aggregate values in the response variable. The logarithm of the pseudo-marginal likelihood (LPML) is used for model comparison. In addition, in order to determine which self-thinning law is more supported by the meta-data, a measure called "Plausibility Index (PI)" is developed. A simulation study is conducted to examine empirical performance of the proposed methodology. Finally, the proposed model and the PI measure are applied to analyze a self-thinning meta-data set in details.

摘要

受自疏元数据的启发,提出了一种精度参数未知的随机效应荟萃分析模型,并采用截断泊松回归模型处理缺失样本量。假设随机效应服从重尾分布,以适应响应变量中的异常汇总值。使用伪边际似然对数(LPML)进行模型比较。此外,为了确定元数据更支持哪种自疏规律,开发了一种称为“合理性指数(PI)”的度量。进行了一项模拟研究,以检验所提出方法的实证性能。最后,将所提出的模型和PI度量应用于详细分析一个自疏元数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f62/8315582/f5c0d23aa6fa/nihms-1660345-f0001.jpg

相似文献

6
Bayesian multivariate skew meta-regression models for individual patient data.贝叶斯多元偏斜个体患者数据荟萃回归模型。
Stat Methods Med Res. 2019 Oct-Nov;28(10-11):3415-3436. doi: 10.1177/0962280218801147. Epub 2018 Oct 12.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验