Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University , Seoul 120-750, Korea.
Graduate School of Energy, Environment, Water, and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST) , Daejon 305-701, Korea.
ACS Appl Mater Interfaces. 2015 Aug 26;7(33):18679-88. doi: 10.1021/acsami.5b05154. Epub 2015 Aug 17.
The crystal phase of nanostructured metal oxide can be effectively controlled by the hybridization of gallium oxide with reduced graphene oxide (rGO) at variable concentrations. The change of the ratio of Ga2O3/rGO is quite effective in tailoring the crystal structure and morphology of nanostructured gallium oxide hybridized with rGO. This is the first example of the phase control of metal oxide through a change of the content of rGO hybridized. The calculations based on density functional theory (DFT) clearly demonstrate that the different surface formation energy and Ga local symmetry of Ga2O3 phases are responsible for the phase transition induced by the change of rGO content. The resulting Ga2O3-rGO nanocomposites show promising electrode performance for lithium ion batteries. The intermediate Li-Ga alloy phases formed during the electrochemical cycling are identified with the DFT calculations. Among the present Ga2O3-rGO nanocomposites, the material with mixed α-Ga2O3/β-Ga2O3/γ-Ga2O3 phase can deliver the largest discharge capacity with the best cyclability and rate characteristics, highlighting the importance of the control of Ga2O3/rGO ratio in optimizing the electrode activity of the composite materials. The present study underscores the usefulness of the phase-control of nanostructured metal oxides achieved by the change of rGO content in exploring novel functional nanocomposite materials.
通过氧化镓与还原氧化石墨烯(rGO)在不同浓度下的杂化,可以有效地控制纳米结构金属氧化物的晶相。Ga2O3/rGO 比例的变化对于调整纳米结构氧化镓与 rGO 杂化的晶体结构和形态非常有效。这是通过改变 rGO 杂化含量来控制金属氧化物相的第一个例子。基于密度泛函理论(DFT)的计算清楚地表明,不同的表面形成能和 Ga 局部对称性是导致 rGO 含量变化引起的相转变的原因。所得到的 Ga2O3-rGO 纳米复合材料在锂离子电池中表现出有前途的电极性能。通过 DFT 计算鉴定了在电化学循环过程中形成的中间 Li-Ga 合金相。在目前的 Ga2O3-rGO 纳米复合材料中,具有混合α-Ga2O3/β-Ga2O3/γ-Ga2O3 相的材料具有最大的放电容量、最佳的循环性能和倍率性能,突出了控制 Ga2O3/rGO 比例在优化复合材料电极活性方面的重要性。本研究强调了通过改变 rGO 含量来控制纳米结构金属氧化物的相,从而探索新型功能纳米复合材料的有用性。