Mallesham Bandi, Roy Swadipta, Bose Saptasree, Nair Aruna N, Sreenivasan Sreeprasad, Shutthanandan Vaithiyalingam, Ramana Chintalapalle V
Center for Advanced Materials Research (CMR), Department of Metallurgical, Materials and Biomedical Engineering and Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave, El Paso, Texas 79968, United States.
Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States.
ACS Omega. 2019 Dec 27;5(1):104-112. doi: 10.1021/acsomega.9b01604. eCollection 2020 Jan 14.
This work for the first time unfurls the fundamental mechanisms and sets the stage for an approach to derive electrocatalytic activity, which is otherwise not possible, in a traditionally known wide band-gap oxide material. Specifically, we report on the tunable optical properties, in terms of wide spectral selectivity and red-shifted band gap, and electrocatalytic behavior of iron (Fe)-doped gallium oxide (β-GaO) model system. X-ray diffraction (XRD) studies of sintered Ga Fe O (GFO) (0.0 ≤ ≤ 0.3) compounds provide evidence for the Fe substitution at Ga site without any secondary phase formation. Rietveld refinement of XRD patterns reveals that the GFO compounds crystallize in monoclinic crystal symmetry with a 2/ space group. The electronic structure of the GFO compounds probed using X-ray photoelectron spectroscopy data reveals that at lower concentrations, Fe exhibits mixed chemical valence states (Fe, Fe), whereas single chemical valence state (Fe) is evident for higher Fe content ( = 0.20-0.30). The optical absorption spectra reveal a significant red shift in the optical band gap with Fe doping. The origin of the significant red shift even at low concentrations of Fe ( = 0.05) is attributed to the strong sp-d exchange interaction originated from the 3d electrons of Fe. The optical absorption edge observed at ≈450 nm with lower intensity is the characteristic of Fe-doped compounds associated with Fe-Fe double-excitation process. Coupled with an optical band-gap red shift, electrocatalytic studies of GFO compounds reveal that, interestingly, Fe-doped GaO compound exhibits electrocatalytic activity in contrast to intrinsic GaO. Fe-doped samples (GFO) demonstrated appreciable electrocatalytic activity toward the generation of H through electrocatalytic water splitting. An onset potential and Tafel slope of GFO compounds include ∼900 mV, ∼210 mV dec ( = 0.15) and ∼1036 mV, ∼290 mV dec ( = 0.30), respectively. The electrocatalytic activity of Fe-doped Ga-oxide compounds is attributed to the cumulative effect of different mechanisms such as doping resulting in new catalytic centers, enhanced conductivity, and electron mobility. Hence, in this report, for the first time, we explored a new pathway; the electrocatalytic behavior of Fe-doped GaO resulted due to Fe chemical states and red shift in the optical band gap. The implications derived from this work may be applicable to a large class of compounds, and further options may be available to design functional materials for electrocatalytic energy production.
这项工作首次揭示了基本机制,并为在传统已知的宽带隙氧化物材料中获得电催化活性奠定了基础,而这在其他情况下是不可能实现的。具体而言,我们报道了铁(Fe)掺杂氧化镓(β-GaO)模型体系的可调光学性质,包括宽光谱选择性和红移带隙,以及电催化行为。对烧结的GaFeO(GFO)(0.0≤≤0.3)化合物进行的X射线衍射(XRD)研究提供了铁在镓位点取代且无任何第二相形成的证据。XRD图谱的Rietveld精修表明,GFO化合物以单斜晶体对称性结晶,空间群为2/。利用X射线光电子能谱数据探测的GFO化合物的电子结构表明,在较低浓度下,铁呈现混合化学价态(Fe、Fe),而对于较高的铁含量(=0.20-0.30),单一化学价态(Fe)很明显。光吸收光谱显示,随着铁掺杂,光学带隙有显著红移。即使在低浓度铁(=0.05)下也出现显著红移的原因是源于铁的3d电子的强sp-d交换相互作用。在≈450nm处观察到的强度较低的光吸收边缘是与Fe-Fe双激发过程相关的铁掺杂化合物的特征。与光学带隙红移相结合,GFO化合物的电催化研究表明,有趣的是,与本征GaO相比,铁掺杂的GaO化合物表现出电催化活性。铁掺杂样品(GFO)对通过电催化水分解产生氢气表现出明显的电催化活性。GFO化合物的起始电位和塔菲尔斜率分别为∼900mV、∼210mV dec(=0.15)和∼1036mV、∼290mV dec(=0.30)。铁掺杂氧化镓化合物的电催化活性归因于不同机制的累积效应,如掺杂产生新的催化中心、增强的导电性和电子迁移率。因此,在本报告中,我们首次探索了一条新途径;铁掺杂GaO的电催化行为是由于铁的化学状态和光学带隙的红移所致。这项工作得出的结论可能适用于一大类化合物,并且可能有更多选择来设计用于电催化能量生产的功能材料。