Huang Xi, He Ye, Dubuc Adrian M, Hashizume Rintaro, Zhang Wei, Reimand Jüri, Yang Huanghe, Wang Tongfei A, Stehbens Samantha J, Younger Susan, Barshow Suzanne, Zhu Sijun, Cooper Michael K, Peacock John, Ramaswamy Vijay, Garzia Livia, Wu Xiaochong, Remke Marc, Forester Craig M, Kim Charles C, Weiss William A, James C David, Shuman Marc A, Bader Gary D, Mueller Sabine, Taylor Michael D, Jan Yuh Nung, Jan Lily Yeh
Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, San Francisco, California, USA.
Howard Hughes Medical Institute, Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, California, USA.
Nat Neurosci. 2015 Sep;18(9):1236-46. doi: 10.1038/nn.4088. Epub 2015 Aug 10.
Over 20% of the drugs for treating human diseases target ion channels, but no cancer drug approved by the US Food and Drug Administration (FDA) is intended to target an ion channel. We found that the EAG2 (Ether-a-go-go 2) potassium channel has an evolutionarily conserved function for promoting brain tumor growth and metastasis, delineate downstream pathways, and uncover a mechanism for different potassium channels to functionally cooperate and regulate mitotic cell volume and tumor progression. EAG2 potassium channel was enriched at the trailing edge of migrating medulloblastoma (MB) cells to regulate local cell volume dynamics, thereby facilitating cell motility. We identified the FDA-approved antipsychotic drug thioridazine as an EAG2 channel blocker that reduces xenografted MB growth and metastasis, and present a case report of repurposing thioridazine for treating a human patient. Our findings illustrate the potential of targeting ion channels in cancer treatment.
超过20%的治疗人类疾病的药物以离子通道为靶点,但美国食品药品监督管理局(FDA)批准的抗癌药物中没有一种是针对离子通道的。我们发现,EAG2(Ether-a-go-go 2)钾通道具有促进脑肿瘤生长和转移的进化保守功能,描绘了下游通路,并揭示了不同钾通道在功能上协同调节有丝分裂细胞体积和肿瘤进展的机制。EAG2钾通道在迁移的髓母细胞瘤(MB)细胞的后缘富集,以调节局部细胞体积动态,从而促进细胞运动。我们确定FDA批准的抗精神病药物硫利达嗪是一种EAG2通道阻滞剂,可减少异种移植的MB生长和转移,并展示了将硫利达嗪重新用于治疗一名人类患者的病例报告。我们的研究结果说明了在癌症治疗中靶向离子通道的潜力。