Hebecker Stefanie, Krausze Joern, Hasenkampf Tatjana, Schneider Julia, Groenewold Maike, Reichelt Joachim, Jahn Dieter, Heinz Dirk W, Moser Jürgen
Institute of Microbiology, Technische Universität Braunschweig, 38106 Braunschweig, Germany;
Department of Molecular Structural Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):10691-6. doi: 10.1073/pnas.1511167112. Epub 2015 Aug 10.
The cytoplasmic membrane is probably the most important physical barrier between microbes and the surrounding habitat. Aminoacylation of the polar head group of the phospholipid phosphatidylglycerol (PG) catalyzed by Ala-tRNA(Ala)-dependent alanyl-phosphatidylglycerol synthase (A-PGS) or by Lys-tRNA(Lys)-dependent lysyl-phosphatidylglycerol synthase (L-PGS) enables bacteria to cope with cationic peptides that are harmful to the integrity of the cell membrane. Accordingly, these synthases also have been designated as multiple peptide resistance factors (MprF). They consist of a separable C-terminal catalytic domain and an N-terminal transmembrane flippase domain. Here we present the X-ray crystallographic structure of the catalytic domain of A-PGS from the opportunistic human pathogen Pseudomonas aeruginosa. In parallel, the structure of the related lysyl-phosphatidylglycerol-specific L-PGS domain from Bacillus licheniformis in complex with the substrate analog L-lysine amide is presented. Both proteins reveal a continuous tunnel that allows the hydrophobic lipid substrate PG and the polar aminoacyl-tRNA substrate to access the catalytic site from opposite directions. Substrate recognition of A-PGS versus L-PGS was investigated using misacylated tRNA variants. The structural work presented here in combination with biochemical experiments using artificial tRNA or artificial lipid substrates reveals the tRNA acceptor stem, the aminoacyl moiety, and the polar head group of PG as the main determinants for substrate recognition. A mutagenesis approach yielded the complementary amino acid determinants of tRNA interaction. These results have broad implications for the design of L-PGS and A-PGS inhibitors that could render microbial pathogens more susceptible to antimicrobial compounds.
细胞质膜可能是微生物与周围栖息地之间最重要的物理屏障。由丙氨酰 - tRNA(Ala)依赖性丙氨酰磷脂酰甘油合酶(A - PGS)或赖氨酰 - tRNA(Lys)依赖性赖氨酰磷脂酰甘油合酶(L - PGS)催化的磷脂酰甘油(PG)极性头部基团的氨酰化作用使细菌能够应对对细胞膜完整性有害的阳离子肽。因此,这些合酶也被指定为多肽抗性因子(MprF)。它们由一个可分离的C末端催化结构域和一个N末端跨膜翻转酶结构域组成。在这里,我们展示了来自机会性人类病原体铜绿假单胞菌的A - PGS催化结构域的X射线晶体结构。同时,还展示了来自地衣芽孢杆菌的相关赖氨酰磷脂酰甘油特异性L - PGS结构域与底物类似物L - 赖氨酸酰胺复合物的结构。这两种蛋白质都揭示了一个连续的通道,该通道允许疏水性脂质底物PG和极性氨酰 - tRNA底物从相反方向进入催化位点。使用错配氨酰化的tRNA变体研究了A - PGS与L - PGS的底物识别。这里展示的结构研究与使用人工tRNA或人工脂质底物的生化实验相结合,揭示了tRNA受体茎、氨酰部分和PG的极性头部基团是底物识别的主要决定因素。诱变方法产生了tRNA相互作用的互补氨基酸决定因素。这些结果对L - PGS和A - PGS抑制剂的设计具有广泛的意义,这些抑制剂可以使微生物病原体对抗菌化合物更敏感。