Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA.
Nat Commun. 2023 Apr 19;14(1):2232. doi: 10.1038/s41467-023-38004-8.
Arginyl-tRNA-protein transferase 1 (ATE1) is a master regulator of protein homeostasis, stress response, cytoskeleton maintenance, and cell migration. The diverse functions of ATE1 arise from its unique enzymatic activity to covalently attach an arginine onto its protein substrates in a tRNA-dependent manner. However, how ATE1 (and other aminoacyl-tRNA transferases) hijacks tRNA from the highly efficient ribosomal protein synthesis pathways and catalyzes the arginylation reaction remains a mystery. Here, we describe the three-dimensional structures of Saccharomyces cerevisiae ATE1 with and without its tRNA cofactor. Importantly, the putative substrate binding domain of ATE1 adopts a previously uncharacterized fold that contains an atypical zinc-binding site critical for ATE1 stability and function. The unique recognition of tRNA by ATE1 is coordinated through interactions with the major groove of the acceptor arm of tRNA. Binding of tRNA induces conformational changes in ATE1 that helps explain the mechanism of substrate arginylation.
精氨酰-tRNA 蛋白转移酶 1(ATE1)是蛋白质动态平衡、应激反应、细胞骨架维持和细胞迁移的主要调节因子。ATE1 的多种功能源于其独特的酶活性,即以 tRNA 依赖性的方式将精氨酸共价连接到其蛋白质底物上。然而,ATE1(和其他氨酰-tRNA 转移酶)如何从高效的核糖体蛋白合成途径中劫持 tRNA 并催化精氨酰化反应仍然是一个谜。在这里,我们描述了酿酒酵母 ATE1 与其 tRNA 辅助因子结合和不结合的三维结构。重要的是,ATE1 的假定底物结合域采用了一种以前未被描述的折叠,其中包含一个对 ATE1 稳定性和功能至关重要的非典型锌结合位点。ATE1 对 tRNA 的独特识别是通过与 tRNA 接受臂的大沟相互作用来协调的。tRNA 的结合诱导 ATE1 的构象变化,有助于解释底物精氨酰化的机制。