Department of Life Sciences, Korea University, Seoul 02841, South Korea.
Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, South Korea.
Proc Natl Acad Sci U S A. 2022 Aug 2;119(31):e2209597119. doi: 10.1073/pnas.2209597119. Epub 2022 Jul 25.
N-degron pathways are proteolytic systems that target proteins bearing N-terminal (Nt) degradation signals (degrons) called N-degrons. Nt-Arg of a protein is among Nt-residues that can be recognized as destabilizing ones by the Arg/N-degron pathway. A proteolytic cleavage of a protein can generate Arg at the N terminus of a resulting C-terminal (Ct) fragment either directly or after Nt-arginylation of that Ct-fragment by the Ate1 arginyl-tRNA-protein transferase (R-transferase), which uses Arg-tRNA as a cosubstrate. Ate1 can Nt-arginylate Nt-Asp, Nt-Glu, and oxidized Nt-Cys* (Cys-sulfinate or Cys-sulfonate) of proteins or short peptides. genes of fungi, animals, and plants have been cloned decades ago, but a three-dimensional structure of Ate1 remained unknown. A detailed mechanism of arginylation is unknown as well. We describe here the crystal structure of the Ate1 R-transferase from the budding yeast . The 58-kDa R-transferase comprises two domains that recognize, together, an acidic Nt-residue of an acceptor substrate, the Arg residue of Arg-tRNA, and a 3'-proximal segment of the tRNA moiety. The enzyme's active site is located, at least in part, between the two domains. In vitro and in vivo arginylation assays with site-directed Ate1 mutants that were suggested by structural results yielded inferences about specific binding sites of Ate1. We also analyzed the inhibition of Nt-arginylation activity of Ate1 by hemin (Fe-heme), and found that hemin induced the previously undescribed disulfide-mediated oligomerization of Ate1. Together, these results advance the understanding of R-transferase and the Arg/N-degron pathway.
N-降解途径是靶向具有称为 N-降解信号(降解基序)的 N 端(Nt)降解信号的蛋白质的蛋白水解系统。蛋白质的 Nt-Arg 是 Nt-残基之一,可被 Arg/N-降解途径识别为不稳定的残基。蛋白质的蛋白水解切割可以直接或在 Ate1 精氨酰-tRNA-蛋白转移酶(R-转移酶)对该 Ct 片段的 Nt-精氨酰化之后在生成的 C 端(Ct)片段的 N 末端产生 Arg,该酶使用 Arg-tRNA 作为共底物。Ate1 可以 Nt-精氨酰化 Nt-Asp、Nt-Glu 和氧化的 Nt-Cys*(半胱氨酸亚磺酸盐或半胱氨酸磺酸盐)的蛋白质或短肽。真菌、动物和植物的基因几十年前就已被克隆,但 Ate1 的三维结构仍然未知。精氨酰化的详细机制也未知。我们在这里描述了来自芽殖酵母的 Ate1 R-转移酶的晶体结构。该 58kDa 的 R-转移酶包含两个结构域,它们共同识别受体底物的酸性 Nt-残基、Arg-tRNA 的 Arg 残基和 tRNA 部分的 3'-近端片段。酶的活性位点至少部分位于两个结构域之间。基于结构结果提出的针对定点 Ate1 突变体的体外和体内精氨酰化测定得出了关于 Ate1 特定结合位点的推论。我们还分析了血红素(Fe-血红素)对 Ate1 的 Nt-精氨酰化活性的抑制作用,发现血红素诱导了以前未描述的 Ate1 的二硫键介导的寡聚化。总之,这些结果促进了对 R-转移酶和 Arg/N-降解途径的理解。