Núñez Eduardo, Steyerberg Ewout W, Núñez Julio
Servicio de Cardiología, Hospital Clínico Universitario, INCLIVA, Universitat de Valencia, España.
Rev Esp Cardiol. 2011 Jun;64(6):501-7. doi: 10.1016/j.recesp.2011.01.019. Epub 2011 Apr 29.
Multivariable regression models are widely used in health science research, mainly for two purposes: prediction and effect estimation. Various strategies have been recommended when building a regression model: a) use the right statistical method that matches the structure of the data; b) ensure an appropriate sample size by limiting the number of variables according to the number of events; c) prevent or correct for model overfitting; d) be aware of the problems associated with automatic variable selection procedures (such as stepwise), and e) always assess the performance of the final model in regard to calibration and discrimination measures. If resources allow, validate the prediction model on external data.
多变量回归模型在健康科学研究中被广泛使用,主要用于两个目的:预测和效应估计。在构建回归模型时,已推荐了各种策略:a)使用与数据结构相匹配的正确统计方法;b)根据事件数量限制变量数量,以确保有适当的样本量;c)防止或校正模型过度拟合;d)注意与自动变量选择程序(如逐步法)相关的问题;e)始终根据校准和区分度指标评估最终模型的性能。如果资源允许,在外部数据上验证预测模型。