Suppr超能文献

基于炎症和营养标志物的肺癌总生存风险预测模型

Risk prediction model for overall survival in lung cancer based on inflammatory and nutritional markers.

作者信息

Zhou Hongqi, Jin Weiyun, Li Lindi, Nie Xiangwen, Wu Weiwei, Chen Ran, Xie Qizhen, Wu Haixia, Jiang Weiwei, Tang Min, Wang Jinhai, Wang Maoyuan

机构信息

Oncology Department, Guiyang Public Health Treatment Center, Guiyang, China.

College of Humanities Education, Inner Mongolia Medical University, Hohhot, 010100, China.

出版信息

Sci Rep. 2025 Aug 22;15(1):30840. doi: 10.1038/s41598-025-16443-1.

Abstract

This study aims to develop a multidimensional risk prediction model, identify characteristic inflammation-nutrition biomarkers, and optimize clinical decision-making. The study included 500 lung cancer patients diagnosed between October 2019 and October 2024 at a tertiary medical institution in Guiyang, China. The exposure variables included eight inflammation-nutrition biomarkers: neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), platelet-to-lymphocyte ratio (PLR), systemic immune-inflammation index (SII), hemoglobin-albumin-lymphocyte-platelet score (HALP), prognostic nutritional index (PNI), hemoglobin-to-red cell distribution width ratio (HRR), and albumin-to-globulin ratio (ALB/GLB). The outcome variable was overall survival (OS). This study aimed to predict 1-year mortality rather than conduct traditional time-to-event survival analysis. All patients were followed until death or a uniform administrative censoring point.LASSO logistic regression was employed to model the outcome as a binary classification (death within 1 year: yes/no).This study employed a small-sample modeling approach, initially using LASSO regression for feature selection and dimensionality reduction, followed by variance inflation factor and collinearity screening for secondary feature selection. Finally, the Support Vector Machine-Recursive Feature Elimination (SVM-RFE) algorithm was used to optimize feature variables. The results showed that age, clinical stage, poor differentiation, ECOG PS 0-1, serum albumin level, LMR, HRR, and ALB/GLB were independent prognostic factors. Based on these factors, a lung cancer mortality risk prediction model was developed, and a corresponding web-based calculator was created, providing a practical tool to support clinical decision-making and personalized treatment strategies.

摘要

本研究旨在建立一个多维风险预测模型,识别特征性炎症-营养生物标志物,并优化临床决策。该研究纳入了2019年10月至2024年10月在中国贵阳一家三级医疗机构诊断的500例肺癌患者。暴露变量包括8种炎症-营养生物标志物:中性粒细胞与淋巴细胞比值(NLR)、淋巴细胞与单核细胞比值(LMR)、血小板与淋巴细胞比值(PLR)、全身免疫炎症指数(SII)、血红蛋白-白蛋白-淋巴细胞-血小板评分(HALP)、预后营养指数(PNI)、血红蛋白与红细胞分布宽度比值(HRR)以及白蛋白与球蛋白比值(ALB/GLB)。结局变量为总生存期(OS)。本研究旨在预测1年死亡率,而非进行传统的事件发生时间生存分析。所有患者均随访至死亡或统一的行政审查点。采用LASSO逻辑回归将结局建模为二元分类(1年内死亡:是/否)。本研究采用小样本建模方法,最初使用LASSO回归进行特征选择和降维,随后进行方差膨胀因子和共线性筛选以进行二次特征选择。最后,使用支持向量机递归特征消除(SVM-RFE)算法优化特征变量。结果显示,年龄、临床分期、低分化、东部肿瘤协作组体能状态0-1、血清白蛋白水平、LMR、HRR和ALB/GLB是独立的预后因素。基于这些因素,建立了肺癌死亡风险预测模型,并创建了相应的基于网络的计算器,为支持临床决策和个性化治疗策略提供了一个实用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94d1/12373724/31bd12d97290/41598_2025_16443_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验