Suppr超能文献

集体智慧与医学决策:集体表现优于最佳放射科医生。

Collective intelligence meets medical decision-making: the collective outperforms the best radiologist.

作者信息

Wolf Max, Krause Jens, Carney Patricia A, Bogart Andy, Kurvers Ralf H J M

机构信息

Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany.

Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany; Faculty of Life Sciences, Humboldt-University of Berlin, Berlin, Germany.

出版信息

PLoS One. 2015 Aug 12;10(8):e0134269. doi: 10.1371/journal.pone.0134269. eCollection 2015.

Abstract

While collective intelligence (CI) is a powerful approach to increase decision accuracy, few attempts have been made to unlock its potential in medical decision-making. Here we investigated the performance of three well-known collective intelligence rules ("majority", "quorum", and "weighted quorum") when applied to mammography screening. For any particular mammogram, these rules aggregate the independent assessments of multiple radiologists into a single decision (recall the patient for additional workup or not). We found that, compared to single radiologists, any of these CI-rules both increases true positives (i.e., recalls of patients with cancer) and decreases false positives (i.e., recalls of patients without cancer), thereby overcoming one of the fundamental limitations to decision accuracy that individual radiologists face. Importantly, we find that all CI-rules systematically outperform even the best-performing individual radiologist in the respective group. Our findings demonstrate that CI can be employed to improve mammography screening; similarly, CI may have the potential to improve medical decision-making in a much wider range of contexts, including many areas of diagnostic imaging and, more generally, diagnostic decisions that are based on the subjective interpretation of evidence.

摘要

虽然集体智慧(CI)是提高决策准确性的一种强大方法,但在医学决策中挖掘其潜力的尝试却很少。在此,我们研究了三种著名的集体智慧规则(“多数规则”、“法定人数规则”和“加权法定人数规则”)应用于乳房X光检查筛查时的表现。对于任何特定的乳房X光片,这些规则将多名放射科医生的独立评估汇总为一个单一决策(召回患者进行进一步检查与否)。我们发现,与单个放射科医生相比,这些集体智慧规则中的任何一种都既能增加真阳性(即召回患有癌症的患者)又能减少假阳性(即召回未患癌症的患者),从而克服了单个放射科医生在决策准确性方面面临的一个基本限制。重要的是,我们发现所有集体智慧规则在各自的组中甚至系统地优于表现最佳的单个放射科医生。我们的研究结果表明,集体智慧可用于改善乳房X光检查筛查;同样,集体智慧可能有潜力在更广泛的背景下改善医学决策,包括许多诊断成像领域,以及更普遍地,基于对证据的主观解释的诊断决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ea2/4534443/c2f1638bf8f1/pone.0134269.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验