Human and Machine Cognition Lab, University of Tübingen, Tübingen 72074, Germany.
Social Psychology and Decision Sciences, Department of Psychology, University of Konstanz, Konstanz 78464, Germany.
Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2404928121. doi: 10.1073/pnas.2404928121. Epub 2024 Sep 20.
There has been much progress in understanding human social learning, including recent studies integrating social information into the reinforcement learning framework. Yet previous studies often assume identical payoffs between observer and demonstrator, overlooking the diversity of social information in real-world interactions. We address this gap by introducing a socially correlated bandit task that accommodates payoff differences among participants, allowing for the study of social learning under more realistic conditions. Our Social Generalization (SG) model, tested through evolutionary simulations and two online experiments, outperforms existing models by incorporating social information into the generalization process, but treating it as noisier than individual observations. Our findings suggest that human social learning is more flexible than previously believed, with the SG model indicating a potential resource-rational trade-off where social learning partially replaces individual exploration. This research highlights the flexibility of humans' social learning, allowing us to integrate social information from others with different preferences, skills, or goals.
人类社会学习的研究已经取得了很大进展,包括最近将社会信息整合到强化学习框架中的研究。然而,以前的研究通常假设观察者和示范者之间的收益相同,忽略了现实世界互动中社会信息的多样性。我们通过引入一个社会相关的强盗任务来解决这个差距,该任务允许参与者之间的收益存在差异,从而在更现实的条件下研究社会学习。我们的社会泛化 (SG) 模型通过进化模拟和两个在线实验进行了测试,通过将社会信息纳入泛化过程,同时将其视为比个体观察更嘈杂,从而超越了现有模型。我们的研究结果表明,人类的社会学习比以前认为的更加灵活,SG 模型表明存在一种潜在的资源理性权衡,即社会学习部分替代了个体探索。这项研究强调了人类社会学习的灵活性,使我们能够将来自具有不同偏好、技能或目标的其他人的社会信息整合起来。