Padgett Lindsey E, Anderson Brian, Liu Chao, Ganini Douglas, Mason Ronald P, Piganelli Jon D, Mathews Clayton E, Tse Hubert M
Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL.
Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL.
Diabetes. 2015 Dec;64(12):4171-83. doi: 10.2337/db15-0546. Epub 2015 Aug 12.
Reactive oxygen species (ROS) play prominent roles in numerous biological systems. While classically expressed by neutrophils and macrophages, CD4 T cells also express NADPH oxidase (NOX), the superoxide-generating multisubunit enzyme. Our laboratory recently demonstrated that superoxide-deficient nonobese diabetic (NOD.Ncf1(m1J)) mice exhibited a delay in type 1 diabetes (T1D) partially due to blunted IFN-γ synthesis by CD4 T cells. For further investigation of the roles of superoxide on CD4 T-cell diabetogenicity, the NOD.BDC-2.5.Ncf1(m1J) (BDC-2.5.Ncf1(m1J)) mouse strain was generated, possessing autoreactive CD4 T cells deficient in NOX-derived superoxide. Unlike NOD.Ncf1(m1J), stimulated BDC-2.5.Ncf1(m1J) CD4 T cells and splenocytes displayed elevated synthesis of Th1 cytokines and chemokines. Superoxide-deficient BDC-2.5 mice developed spontaneous T1D, and CD4 T cells were more diabetogenic upon adoptive transfer into NOD.Rag recipients due to a skewing toward impaired Treg suppression. Exogenous superoxide blunted exacerbated Th1 cytokines and proinflammatory chemokines to approximately wild-type levels, concomitant with reduced IL-12Rβ2 signaling and P-STAT4 (Y693) activation. These results highlight the importance of NOX-derived superoxide in curbing autoreactivity due, in part, to control of Treg function and as a redox-dependent checkpoint of effector T-cell responses. Ultimately, our studies reveal the complexities of free radicals in CD4 T-cell responses.
活性氧(ROS)在众多生物系统中发挥着重要作用。虽然传统上由中性粒细胞和巨噬细胞表达,但CD4 T细胞也表达NADPH氧化酶(NOX),即产生超氧化物的多亚基酶。我们实验室最近证明,超氧化物缺陷型非肥胖糖尿病(NOD.Ncf1(m1J))小鼠1型糖尿病(T1D)的发病延迟,部分原因是CD4 T细胞的IFN-γ合成减弱。为了进一步研究超氧化物对CD4 T细胞致糖尿病性的作用,构建了NOD.BDC-2.5.Ncf1(m1J)(BDC-2.5.Ncf1(m1J))小鼠品系,其自身反应性CD4 T细胞缺乏NOX衍生的超氧化物。与NOD.Ncf1(m1J)不同,受刺激的BDC-2.5.Ncf1(m1J) CD4 T细胞和脾细胞显示出Th1细胞因子和趋化因子的合成增加。超氧化物缺陷型BDC-2.5小鼠发生自发性T1D,并且CD4 T细胞在过继转移到NOD.Rag受体后由于偏向于Treg抑制受损而更具致糖尿病性。外源性超氧化物将加剧的Th1细胞因子和促炎趋化因子减弱至近似野生型水平,同时伴随IL-12Rβ2信号传导和P-STAT4(Y693)激活的减少。这些结果突出了NOX衍生的超氧化物在抑制自身反应性中的重要性,部分原因是对Treg功能的控制以及作为效应T细胞反应的氧化还原依赖性检查点。最终,我们的研究揭示了CD4 T细胞反应中自由基的复杂性。