Suppr超能文献

风险与不确定性下的决策。

Decision making under risk and uncertainty.

机构信息

Department of Psychology, Miami University, Oxford, OH 45056, USA.

Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA.

出版信息

Wiley Interdiscip Rev Cogn Sci. 2010 Sep;1(5):736-749. doi: 10.1002/wcs.76. Epub 2010 Apr 20.

Abstract

Decision making is studied from a number of different theoretical approaches. Normative theories focus on how to make the best decisions by deriving algebraic representations of preference from idealized behavioral axioms. Descriptive theories adopt this algebraic representation, but incorporate known limitations of human behavior. Computational approaches start from a different set of assumptions altogether, focusing instead on the underlying cognitive and emotional processes that result in the selection of one option over the other. This review comprehensively but concisely describes and contrasts three approaches in terms of their theoretical assumptions and their ability to account for behavioral and neurophysiological evidence from experimental research. Although each approach contributes substantially to our understanding of human decision making, we argue that the computational approach is more fruitful and parsimonious for describing and predicting choices in both laboratory and applied settings and for understanding the neurophysiological substrates of decision making. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website.

摘要

决策是从许多不同的理论方法来研究的。规范性理论侧重于如何通过从理想化的行为公理中推导出偏好的代数表示来做出最佳决策。描述性理论采用这种代数表示,但同时纳入了人类行为的已知局限性。计算方法则从完全不同的假设出发,专注于导致选择一个选项而不是另一个选项的潜在认知和情感过程。本综述全面而简洁地描述和对比了这三种方法,从理论假设和对实验研究中行为和神经生理学证据的解释能力方面进行了对比。尽管每种方法都对我们理解人类决策做出了重要贡献,但我们认为,在描述和预测实验室和实际环境中的选择以及理解决策的神经生理学基础方面,计算方法更具成效且更简约。版权所有©2010 约翰威立父子公司。如需获取与本文相关的更多资源,请访问 WIREs 网站。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验