Ea Vuthy, Sexton Tom, Gostan Thierry, Herviou Laurie, Baudement Marie-Odile, Zhang Yunzhe, Berlivet Soizik, Le Lay-Taha Marie-Noëlle, Cathala Guy, Lesne Annick, Victor Jean-Marc, Fan Yuhong, Cavalli Giacomo, Forné Thierry
Institut de Génétique Moléculaire de Montpellier, UMR5535, CNRS, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier, Cedex 5, France.
Institut de Génétique Humaine, UPR 1142, CNRS, Montpellier, France.
BMC Genomics. 2015 Aug 15;16(1):607. doi: 10.1186/s12864-015-1786-8.
In higher eukaryotes, the genome is partitioned into large "Topologically Associating Domains" (TADs) in which the chromatin displays favoured long-range contacts. While a crumpled/fractal globule organization has received experimental supports at higher-order levels, the organization principles that govern chromatin dynamics within these TADs remain unclear. Using simple polymer models, we previously showed that, in mouse liver cells, gene-rich domains tend to adopt a statistical helix shape when no significant locus-specific interaction takes place.
Here, we use data from diverse 3C-derived methods to explore chromatin dynamics within mouse and Drosophila TADs. In mouse Embryonic Stem Cells (mESC), that possess large TADs (median size of 840 kb), we show that the statistical helix model, but not globule models, is relevant not only in gene-rich TADs, but also in gene-poor and gene-desert TADs. Interestingly, this statistical helix organization is considerably relaxed in mESC compared to liver cells, indicating that the impact of the constraints responsible for this organization is weaker in pluripotent cells. Finally, depletion of histone H1 in mESC alters local chromatin flexibility but not the statistical helix organization. In Drosophila, which possesses TADs of smaller sizes (median size of 70 kb), we show that, while chromatin compaction and flexibility are finely tuned according to the epigenetic landscape, chromatin dynamics within TADs is generally compatible with an unconstrained polymer configuration.
Models issued from polymer physics can accurately describe the organization principles governing chromatin dynamics in both mouse and Drosophila TADs. However, constraints applied on this dynamics within mammalian TADs have a peculiar impact resulting in a statistical helix organization.
在高等真核生物中,基因组被划分为大型“拓扑相关结构域”(TADs),其中染色质呈现出偏好的长程接触。虽然在高阶水平上,皱缩/分形球体组织已得到实验支持,但这些TADs内染色质动力学的组织原则仍不清楚。我们之前使用简单的聚合物模型表明,在小鼠肝细胞中,当没有显著的位点特异性相互作用发生时,富含基因的结构域倾向于呈现统计螺旋形状。
在这里,我们使用来自多种3C衍生方法的数据来探索小鼠和果蝇TADs内的染色质动力学。在具有大型TADs(中位大小为840 kb)的小鼠胚胎干细胞(mESC)中,我们表明统计螺旋模型而非球体模型不仅在富含基因的TADs中适用,在基因贫乏和基因缺失的TADs中也适用。有趣地是,与肝细胞相比,mESC中的这种统计螺旋组织明显更为松弛,这表明负责这种组织的限制因素在多能细胞中的影响较弱。最后,mESC中组蛋白H1的缺失改变了局部染色质的灵活性,但没有改变统计螺旋组织。在具有较小TADs(中位大小为70 kb)的果蝇中,我们表明,虽然染色质的压缩和灵活性根据表观遗传景观进行了精细调节,但TADs内的染色质动力学通常与无约束的聚合物构型兼容。
从聚合物物理学得出的模型可以准确描述小鼠和果蝇TADs中染色质动力学的组织原则。然而,施加在哺乳动物TADs内这种动力学上的限制具有特殊影响,导致统计螺旋组织的形成。