Suppr超能文献

人类和小鼠中 Wnt/β-连环蛋白信号改变相关骨骼表型的全面概述。

A Comprehensive Overview of Skeletal Phenotypes Associated with Alterations in Wnt/β-catenin Signaling in Humans and Mice.

机构信息

Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA.

出版信息

Bone Res. 2013 Mar 29;1(1):27-71. doi: 10.4248/BR201301004. eCollection 2013 Mar.

Abstract

The Wnt signaling pathway plays key roles in differentiation and development and alterations in this signaling pathway are causally associated with numerous human diseases. While several laboratories were examining roles for Wnt signaling in skeletal development during the 1990s, interest in the pathway rose exponentially when three key papers were published in 2001-2002. One report found that loss of the Wnt co-receptor, Low-density lipoprotein related protein-5 (LRP5), was the underlying genetic cause of the syndrome Osteoporosis pseudoglioma (OPPG). OPPG is characterized by early-onset osteoporosis causing increased susceptibility to debilitating fractures. Shortly thereafter, two groups reported that individuals carrying a specific point mutation in LRP5 (G171V) develop high-bone mass. Subsequent to this, the causative mechanisms for these observations heightened the need to understand the mechanisms by which Wnt signaling controlled bone development and homeostasis and encouraged significant investment from biotechnology and pharmaceutical companies to develop methods to activate Wnt signaling to increase bone mass to treat osteoporosis and other bone disease. In this review, we will briefly summarize the cellular mechanisms underlying Wnt signaling and discuss the observations related to OPPG and the high-bone mass disorders that heightened the appreciation of the role of Wnt signaling in normal bone development and homeostasis. We will then present a comprehensive overview of the core components of the pathway with an emphasis on the phenotypes associated with mice carrying genetically engineered mutations in these genes and clinical observations that further link alterations in the pathway to changes in human bone.

摘要

Wnt 信号通路在分化和发育中起着关键作用,该信号通路的改变与许多人类疾病有因果关系。虽然在 20 世纪 90 年代,几家实验室一直在研究 Wnt 信号在骨骼发育中的作用,但当 2001 年至 2002 年发表了三篇关键论文后,人们对该通路的兴趣呈指数级增长。一篇报道发现,Wnt 共受体低密度脂蛋白相关蛋白-5(LRP5)的缺失是骨质疏松假瘤(OPPG)综合征的潜在遗传原因。OPPG 的特征是早发性骨质疏松症导致易发生使人衰弱的骨折。此后不久,有两组研究人员报道,携带 LRP5 特定点突变(G171V)的个体具有高骨量。随后,这些观察结果的因果机制提高了人们对了解 Wnt 信号控制骨骼发育和平衡的机制的需求,并鼓励生物技术和制药公司进行大量投资,以开发激活 Wnt 信号以增加骨量来治疗骨质疏松症和其他骨骼疾病的方法。在这篇综述中,我们将简要总结 Wnt 信号背后的细胞机制,并讨论与 OPPG 相关的观察结果以及高骨量疾病,这些观察结果提高了人们对 Wnt 信号在正常骨骼发育和平衡中的作用的认识。然后,我们将全面概述该途径的核心组成部分,并重点介绍与这些基因发生基因工程突变的小鼠相关的表型以及进一步将途径改变与人类骨骼变化联系起来的临床观察结果。

相似文献

1
3
LRP5, Bone Mass Polymorphisms and Skeletal Disorders.
Genes (Basel). 2023 Sep 23;14(10):1846. doi: 10.3390/genes14101846.
4
LRP5 mutations in osteoporosis-pseudoglioma syndrome and high-bone-mass disorders.
Joint Bone Spine. 2005 May;72(3):207-14. doi: 10.1016/j.jbspin.2004.10.008.
6
7
Exploiting the WNT Signaling Pathway for Clinical Purposes.
Curr Osteoporos Rep. 2017 Jun;15(3):153-161. doi: 10.1007/s11914-017-0357-0.
8
Clinical and molecular findings in osteoporosis-pseudoglioma syndrome.
Am J Hum Genet. 2005 Nov;77(5):741-53. doi: 10.1086/497706. Epub 2005 Sep 27.
9
[Wnt-beta-catenin signaling in bone metabolism].
Clin Calcium. 2006 Jan;16(1):54-60.
10
BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop.
J Bone Miner Res. 2003 Oct;18(10):1842-53. doi: 10.1359/jbmr.2003.18.10.1842.

引用本文的文献

1
Effect of adipokines on bone marrow mesenchymal stem cell function.
World J Stem Cells. 2025 May 26;17(5):106150. doi: 10.4252/wjsc.v17.i5.106150.
2
LRP5 promotes adipose progenitor cell fitness and adipocyte insulin sensitivity.
Commun Med (Lond). 2025 Feb 25;5(1):51. doi: 10.1038/s43856-025-00774-1.
3
Metabolic reprogramming in skeletal cell differentiation.
Bone Res. 2024 Oct 11;12(1):57. doi: 10.1038/s41413-024-00374-0.
4
MicroRNAs in fluorosis pathogenesis: impact on dental, skeletal, and soft tissues.
Arch Toxicol. 2024 Dec;98(12):3913-3932. doi: 10.1007/s00204-024-03853-9. Epub 2024 Sep 13.
6
A comprehensive review and advanced biomolecule-based therapies for osteoporosis.
J Adv Res. 2025 May;71:337-354. doi: 10.1016/j.jare.2024.05.024. Epub 2024 May 27.
9
Carnosine, Zinc and Copper: A Menage a Trois in Bone and Cartilage Protection.
Int J Mol Sci. 2023 Nov 11;24(22):16209. doi: 10.3390/ijms242216209.

本文引用的文献

1
β-catenin promotes bone formation and suppresses bone resorption in postnatal growing mice.
J Bone Miner Res. 2013 May;28(5):1160-9. doi: 10.1002/jbmr.1834.
3
The β-catenin destruction complex.
Cold Spring Harb Perspect Biol. 2013 Jan 1;5(1):a007898. doi: 10.1101/cshperspect.a007898.
4
The complex world of WNT receptor signalling.
Nat Rev Mol Cell Biol. 2012 Dec;13(12):767-79. doi: 10.1038/nrm3470. Epub 2012 Nov 15.
5
Novel SOST gene mutation in a sclerosteosis patient and her parents.
Bone. 2013 Feb;52(2):707-10. doi: 10.1016/j.bone.2012.10.009. Epub 2012 Oct 16.
7
Genetic studies on components of the Wnt signalling pathway and the severity of joint destruction in rheumatoid arthritis.
Ann Rheum Dis. 2013 May;72(5):769-75. doi: 10.1136/annrheumdis-2012-202184. Epub 2012 Oct 5.
8
Active Wnt proteins are secreted on exosomes.
Nat Cell Biol. 2012 Oct;14(10):1036-45. doi: 10.1038/ncb2574. Epub 2012 Sep 16.
9
Cell biology. The unusual case of Porcupine.
Science. 2012 Aug 24;337(6097):922-3. doi: 10.1126/science.1228179.
10
Structural architecture and functional evolution of Wnts.
Dev Cell. 2012 Aug 14;23(2):227-32. doi: 10.1016/j.devcel.2012.07.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验