Suppr超能文献

癌基因在细胞生长和稳态之间保持平衡。

Oncogenes strike a balance between cellular growth and homeostasis.

作者信息

Qiu Bo, Simon M Celeste

机构信息

Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.

Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Semin Cell Dev Biol. 2015 Jul;43:3-10. doi: 10.1016/j.semcdb.2015.08.005. Epub 2015 Aug 13.

Abstract

Altered tumor cell metabolism is now firmly established as a hallmark of human cancer. Downstream of oncogenic events, metabolism is re-wired to support cellular energetics and supply the building blocks for biomass. Rapid, uncontrolled proliferation results in tumor growth beyond the reach of existing vasculature and triggers cellular adaptations to overcome limiting nutrient and oxygen delivery. However, oncogenic activation and metabolic re-programming also elicit cell intrinsic stresses, independent of the tumor microenvironment. To ensure metabolic robustness and stress resistance, pro-growth signals downstream of oncogene activation or tumor suppressor loss simultaneously activate homeostatic processes. Here, we summarize recent literature describing the adaptive mechanisms co-opted by common oncogenes, including mTOR, MYC, and RAS. Recurrent themes in our review include: (1) coordination of oncogene-induced changes in protein and lipid metabolism to sustain endoplasmic reticulum homeostasis, (2) maintenance of mitochondrial functional capacity to support anabolic metabolism, (3) adaptations to sustain intracellular metabolite concentrations required for growth, and (4) prevention of oxidative stress. We also include a discussion of the hypoxia inducible factors (HIFs) and the AMP-dependent protein kinase (AMPK)--stress sensors that are co-opted to support tumor growth. Ultimately, an understanding of the adaptations required downstream of specific oncogenes could reveal targetable metabolic vulnerabilities.

摘要

肿瘤细胞代谢改变现已被确认为人类癌症的一个标志。在致癌事件的下游,代谢被重新布线以支持细胞能量代谢并为生物量提供组成成分。快速、不受控制的增殖导致肿瘤生长超出现有脉管系统的范围,并触发细胞适应性变化以克服营养物质和氧气供应受限的问题。然而,致癌激活和代谢重编程也会引发细胞内在应激,这与肿瘤微环境无关。为确保代谢稳健性和抗应激能力,致癌基因激活或肿瘤抑制因子缺失下游的促生长信号会同时激活稳态过程。在此,我们总结了近期描述常见致癌基因(包括mTOR、MYC和RAS)所采用的适应性机制的文献。我们综述中的反复出现的主题包括:(1)协调致癌基因诱导的蛋白质和脂质代谢变化以维持内质网稳态,(2)维持线粒体功能能力以支持合成代谢,(3)适应以维持生长所需的细胞内代谢物浓度,以及(4)预防氧化应激。我们还讨论了缺氧诱导因子(HIFs)和AMP依赖的蛋白激酶(AMPK)——被用于支持肿瘤生长的应激传感器。最终,了解特定致癌基因下游所需的适应性变化可能会揭示可靶向的代谢脆弱性。

相似文献

1
Oncogenes strike a balance between cellular growth and homeostasis.
Semin Cell Dev Biol. 2015 Jul;43:3-10. doi: 10.1016/j.semcdb.2015.08.005. Epub 2015 Aug 13.
2
Oncogenic regulation of tumor metabolic reprogramming.
Oncotarget. 2016 Sep 20;7(38):62726-62753. doi: 10.18632/oncotarget.10911.
3
The AMP-activated protein kinase (AMPK) and cancer: many faces of a metabolic regulator.
Cancer Lett. 2015 Jan 28;356(2 Pt A):165-70. doi: 10.1016/j.canlet.2014.01.018. Epub 2014 Jan 28.
4
MYC and metabolism on the path to cancer.
Semin Cell Dev Biol. 2015 Jul;43:11-21. doi: 10.1016/j.semcdb.2015.08.003. Epub 2015 Aug 12.
5
Energy regulation: HIF MXIes it up with the C-MYC powerhouse.
Dev Cell. 2007 Jun;12(6):845-6. doi: 10.1016/j.devcel.2007.05.006.
6
HIF2α-Dependent Lipid Storage Promotes Endoplasmic Reticulum Homeostasis in Clear-Cell Renal Cell Carcinoma.
Cancer Discov. 2015 Jun;5(6):652-67. doi: 10.1158/2159-8290.CD-14-1507. Epub 2015 Mar 31.
7
Antagonistic role of natural compounds in mTOR-mediated metabolic reprogramming.
Cancer Lett. 2015 Jan 28;356(2 Pt A):251-62. doi: 10.1016/j.canlet.2014.02.008. Epub 2014 Feb 14.
8
Carrot and stick: HIF-alpha engages c-Myc in hypoxic adaptation.
Cell Death Differ. 2008 Apr;15(4):672-7. doi: 10.1038/sj.cdd.4402302. Epub 2008 Jan 11.
9
Mitochondrial dysfunction in primary human fibroblasts triggers an adaptive cell survival program that requires AMPK-α.
Biochim Biophys Acta. 2015 Mar;1852(3):529-40. doi: 10.1016/j.bbadis.2014.12.012. Epub 2014 Dec 20.

引用本文的文献

1
The potential anti-tumor effect of anesthetics on cancer by regulating autophagy.
Front Pharmacol. 2024 Feb 28;15:1293980. doi: 10.3389/fphar.2024.1293980. eCollection 2024.
2
Effective oxygen metabolism-based prognostic signature for colorectal cancer.
Front Oncol. 2023 Feb 9;13:1072941. doi: 10.3389/fonc.2023.1072941. eCollection 2023.
3
Regulation of Metastatic Tumor Dormancy and Emerging Opportunities for Therapeutic Intervention.
Int J Mol Sci. 2022 Nov 11;23(22):13931. doi: 10.3390/ijms232213931.
4
Lipid metabolism in tumor microenvironment: novel therapeutic targets.
Cancer Cell Int. 2022 Jul 5;22(1):224. doi: 10.1186/s12935-022-02645-4.
5
Visual barcodes for clonal-multiplexing of live microscopy-based assays.
Nat Commun. 2022 May 18;13(1):2725. doi: 10.1038/s41467-022-30008-0.
6
Onco-Preventive and Chemo-Protective Effects of Apple Bioactive Compounds.
Nutrients. 2021 Nov 11;13(11):4025. doi: 10.3390/nu13114025.
8
2-Oxoglutarate-dependent dioxygenases in cancer.
Nat Rev Cancer. 2020 Dec;20(12):710-726. doi: 10.1038/s41568-020-00303-3. Epub 2020 Oct 21.

本文引用的文献

1
HIF2α-Dependent Lipid Storage Promotes Endoplasmic Reticulum Homeostasis in Clear-Cell Renal Cell Carcinoma.
Cancer Discov. 2015 Jun;5(6):652-67. doi: 10.1158/2159-8290.CD-14-1507. Epub 2015 Mar 31.
2
Nutrient-sensing mechanisms across evolution.
Cell. 2015 Mar 26;161(1):67-83. doi: 10.1016/j.cell.2015.02.041.
3
The role for autophagy in cancer.
J Clin Invest. 2015 Jan;125(1):42-6. doi: 10.1172/JCI73941. Epub 2015 Jan 2.
4
Deregulated Myc requires MondoA/Mlx for metabolic reprogramming and tumorigenesis.
Cancer Cell. 2015 Feb 9;27(2):271-85. doi: 10.1016/j.ccell.2014.11.024. Epub 2015 Jan 29.
5
Hif-2α promotes degradation of mammalian peroxisomes by selective autophagy.
Cell Metab. 2014 Nov 4;20(5):882-897. doi: 10.1016/j.cmet.2014.09.017.
6
mTORC1-mediated translational elongation limits intestinal tumour initiation and growth.
Nature. 2015 Jan 22;517(7535):497-500. doi: 10.1038/nature13896. Epub 2014 Nov 5.
7
Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel?
Nat Rev Cancer. 2014 Nov;14(11):709-21. doi: 10.1038/nrc3803.
8
Therapeutic targeting of cellular metabolism in cells with hyperactive mTORC1: a paradigm shift.
Mol Cancer Res. 2015 Jan;13(1):3-8. doi: 10.1158/1541-7786.MCR-14-0343. Epub 2014 Oct 8.
9
Cellular and metabolic functions for autophagy in cancer cells.
Trends Cell Biol. 2015 Jan;25(1):37-45. doi: 10.1016/j.tcb.2014.09.001. Epub 2014 Sep 30.
10
Validation of mammalian target of rapamycin biomarker panel in patients with clear cell renal cell carcinoma.
Cancer. 2015 Jan 1;121(1):43-50. doi: 10.1002/cncr.28976. Epub 2014 Sep 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验