Bilgic Berkin, Xie Luke, Dibb Russell, Langkammer Christian, Mutluay Aysegul, Ye Huihui, Polimeni Jonathan R, Augustinack Jean, Liu Chunlei, Wald Lawrence L, Setsompop Kawin
Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA.
Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA.
Neuroimage. 2016 Jan 15;125:1131-1141. doi: 10.1016/j.neuroimage.2015.08.015. Epub 2015 Aug 12.
Three-dimensional gradient echo (GRE) is the main workhorse sequence used for susceptibility weighted imaging (SWI), quantitative susceptibility mapping (QSM), and susceptibility tensor imaging (STI). Achieving optimal phase signal-to-noise ratio requires late echo times, thus necessitating a long repetition time (TR). Combined with the large encoding burden of whole-brain coverage with high resolution, this leads to increased scan time. Further, the dipole kernel relating the tissue phase to the underlying susceptibility distribution undersamples the frequency content of the susceptibility map. Scans at multiple head orientations along with calculation of susceptibility through multi-orientation sampling (COSMOS) are one way to effectively mitigate this issue. Additionally, STI requires a minimum of 6 head orientations to solve for the independent tensor elements in each voxel. The requirements of high-resolution imaging with long TR at multiple orientations substantially lengthen the acquisition of COSMOS and STI. The goal of this work is to dramatically speed up susceptibility mapping at multiple head orientations. We demonstrate highly efficient acquisition using 3D-GRE with Wave-CAIPI and dramatically reduce the acquisition time of these protocols. Using R=15-fold acceleration with Wave-CAIPI permits acquisition per head orientation in 90s at 1.1mm isotropic resolution, and 5:35min at 0.5mm isotropic resolution. Since Wave-CAIPI fully harnesses the 3D spatial encoding capability of receive arrays, the maximum g-factor noise amplification remains below 1.30 at 3T and 1.12 at 7T. This allows a 30-min exam for STI with 12 orientations, thus paving the way to its clinical application.
三维梯度回波(GRE)是用于磁敏感加权成像(SWI)、定量磁敏感图谱(QSM)和磁敏感张量成像(STI)的主要序列。要实现最佳的相位信噪比需要较晚的回波时间,因此需要较长的重复时间(TR)。再加上全脑高分辨率覆盖的大编码负担,这导致扫描时间增加。此外,将组织相位与潜在磁敏感分布相关联的偶极核会对磁敏感图谱的频率成分进行欠采样。沿多个头部方向进行扫描并通过多方向采样计算磁敏感性(COSMOS)是有效缓解此问题的一种方法。此外,STI需要至少6个头部方向来求解每个体素中的独立张量元素。在多个方向上进行长TR的高分辨率成像要求大大延长了COSMOS和STI的采集时间。这项工作的目标是大幅加快多个头部方向的磁敏感图谱绘制速度。我们展示了使用带有Wave-CAIPI的3D-GRE进行高效采集,并显著减少了这些协议的采集时间。使用Wave-CAIPI实现15倍加速,允许在1.1毫米各向同性分辨率下每个头部方向在90秒内采集,在0.5毫米各向同性分辨率下在5分35秒内采集。由于Wave-CAIPI充分利用了接收阵列的3D空间编码能力,在3T时最大g因子噪声放大保持在1.30以下,在7T时保持在1.12以下。这使得12个方向的STI检查只需30分钟,从而为其临床应用铺平了道路。