Kou Liangzhi, Frauenheim Thomas, Chen Changfeng
†Bremen Center for Computational Materials Science, University of Bremen, Am Falturm 1, 28359 Bremen, Germany.
‡Department of Physics and Astronomy and High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154, United States.
J Phys Chem Lett. 2014 Aug 7;5(15):2675-81. doi: 10.1021/jz501188k. Epub 2014 Jul 24.
Recent reports on the fabrication of phosphorene, that is, mono- or few-layer black phosphorus, have raised exciting prospects of an outstanding two-dimensional (2D) material that exhibits excellent properties for nanodevice applications. Here, we study by first-principles calculations the adsorption of CO, CO2, NH3, NO, and NO2 gas molecules on a monolayer phosphorene. Our results predict superior sensing performance of phosphorene that rivals or even surpasses that of other 2D materials such as graphene and MoS2. We determine the optimal adsorption positions of these molecules on the phosphorene and identify molecular doping, that is, charge transfer between the molecules and phosphorene, as the driving mechanism for the high adsorption strength. We further calculated the current-voltage (I-V) relation using the nonequilibrium Green's function (NEGF) formalism. The transport features show large (1-2 orders of magnitude) anisotropy along different (armchair or zigzag) directions, which is consistent with the anisotropic electronic band structure of phosphorene. Remarkably, the I-V relation exhibits distinct responses with a marked change of the I-V relation along either the armchair or the zigzag directions depending on the type of molecules. Such selectivity and sensitivity to adsorption makes phosphorene a superior gas sensor that promises wide-ranging applications.
最近关于磷烯(即单层或少数层黑磷)制备的报道,为一种出色的二维(2D)材料带来了令人兴奋的前景,这种材料在纳米器件应用中展现出优异的性能。在此,我们通过第一性原理计算研究了CO、CO2、NH3、NO和NO2气体分子在单层磷烯上的吸附情况。我们的结果预测磷烯具有卓越的传感性能,可与甚至超越石墨烯和MoS2等其他二维材料。我们确定了这些分子在磷烯上的最佳吸附位置,并确定分子掺杂(即分子与磷烯之间的电荷转移)是高吸附强度的驱动机制。我们还使用非平衡格林函数(NEGF)形式计算了电流-电压(I-V)关系。传输特性显示出沿不同(扶手椅型或锯齿型)方向存在很大(1 - 2个数量级)的各向异性,这与磷烯的各向异性电子能带结构一致。值得注意的是,I-V关系根据分子类型沿扶手椅型或锯齿型方向呈现出明显的响应,I-V关系有显著变化。这种对吸附的选择性和敏感性使磷烯成为一种有广泛应用前景的卓越气体传感器。