Kaewmaraya T, Ngamwongwan L, Moontragoon P, Jarernboon W, Singh D, Ahuja R, Karton A, Hussain T
Integrated Nanotechnology Research Center, Department of Physics, Khon Kaen University, Khon Kaen, Thailand; Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Research Network of NANOTEC- KKU (RNN), Khon Kaen University, Khon Kaen, 40002, Thailand.
School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
J Hazard Mater. 2021 Jan 5;401:123340. doi: 10.1016/j.jhazmat.2020.123340. Epub 2020 Jun 30.
Green phosphorus and its monolayer variant, green phosphorene (GreenP), are the recent members of two-dimensional (2D) phosphorus polymorphs. The new polymorph possesses the high stability, tunable direct bandgap, exceptional electronic transport, and directionally anisotropic properties. All these unique features could reinforce it the new contender in a variety of electronic, optical, and sensing devices. Herein, we present gas-sensing characteristics of pristine and defected GreenP towards major environmental gases (i. e., NH, NO, NO, CO, CO, and HO) using combination of the density functional theory, statistical thermodynamic modeling, and the non-equilibrium Green's function approach (NEGF). The calculated adsorption energies, density of states (DOS), charge transfer, and Crystal Orbital Hamiltonian Population (COHP) reveal that NO, NO, CO, CO are adsorbed on GreenP, stronger than both NH and HO, which are weakly physisorbed via van der Waals interactions. Furthermore, substitutional doping by sulfur can selectively intensify the adsorption towards crucial NO gas because of the enhanced charge transfer between p orbitals of the dopant and the analyte. The statistical estimation of macroscopic measurable adsorption densities manifests that the significant amount of NO molecules can be practically adsorbed at ambient temperature even at the ultra-low concentration of part per billion (ppb). In addition, the current-voltage (I-V) characteristics of S-doped GreenP exhibit a variation upon NO exposure, indicating the superior sensitivity in sensing devices. Our work sheds light on the promising application of the novel GreenP as promising chemical gas sensors.
绿磷及其单层变体——绿磷烯(GreenP),是二维(2D)磷多晶型物中的新成员。这种新的多晶型物具有高稳定性、可调节的直接带隙、优异的电子传输性能以及方向各向异性特性。所有这些独特特性使其成为各种电子、光学和传感设备中的新竞争者。在此,我们结合密度泛函理论、统计热力学建模和非平衡格林函数方法(NEGF),展示了原始和有缺陷的GreenP对主要环境气体(即NH、NO、NO、CO、CO和HO)的气敏特性。计算得到的吸附能、态密度(DOS)、电荷转移和晶体轨道哈密顿布居(COHP)表明,NO、NO、CO、CO在GreenP上的吸附比NH和HO更强,NH和HO通过范德华相互作用发生弱物理吸附。此外,由于掺杂剂的p轨道与分析物之间电荷转移增强,硫的替代掺杂可以选择性地增强对关键NO气体的吸附。宏观可测量吸附密度的统计估计表明,即使在十亿分之一(ppb)的超低浓度下,在环境温度下也能实际吸附大量的NO分子。此外,S掺杂的GreenP的电流-电压(I-V)特性在NO暴露时会发生变化,表明其在传感设备中具有优异的灵敏度。我们的工作揭示了新型GreenP作为有前景的化学气体传感器的应用前景。