Ehtesabi Sadaf, Richter Martin, Kupfer Stephan, Gräfe Stefanie
Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany.
Fraunhofer Institute for Applied Optics and Precision Engineering, 07745 Jena, Germany.
Nanoscale. 2024 Aug 15;16(32):15219-15229. doi: 10.1039/d4nr02099e.
Plasmon-driven reactions on metal nanoparticles feature rich and complex mechanistic contributions, involving a manifold of electronic states, near-field enhancement, and heat, among others. Although localized surface plasmon resonances are believed to initiate these reactions, the complex reactivity demands deeper exploration. This computational study investigates factors influencing chemical processes on plasmonic nanoparticles, exemplified by protonation of 4-mercaptopyridine (4-MPY) on silver nanoparticles. We examine the impact of molecular binding modes and molecule-molecule interactions on the nanoparticle's surface, near-field electromagnetic effects, and charge-transfer phenomena. Two proton sources were considered at ambient conditions, molecular hydrogen and water. Our findings reveal that the substrate's binding mode significantly affects not only the energy barriers governing the thermodynamics and kinetics of the reaction but also determine the directionality of light-driven charge-transfer at the 4-MPY-Ag interface, pivotal in the chemical contribution involved in the reaction mechanism. In addition, significant field enhancement surrounding the adsorbed molecule is observed (eletromagnetic contribution) which was found insufficient to modify the ground state thermodynamics. Instead, it initiates and amplifies light-driven charge-transfer and thus modulates the excited states' reactivity in the plasmonic-molecular hybrid system. This research elucidates protonation mechanisms on silver surfaces, highlighting the role of molecular-surface and molecule-molecule-surface orientation in plasmon-catalysis.
金属纳米颗粒上的等离子体驱动反应具有丰富而复杂的机制贡献,涉及多种电子态、近场增强和热等。尽管局部表面等离子体共振被认为引发了这些反应,但复杂的反应性需要更深入的探索。这项计算研究调查了影响等离子体纳米颗粒上化学过程的因素,以银纳米颗粒上4-巯基吡啶(4-MPY)的质子化为例。我们研究了分子结合模式和分子间相互作用对纳米颗粒表面、近场电磁效应和电荷转移现象的影响。在环境条件下考虑了两种质子源,分子氢和水。我们的研究结果表明,底物的结合模式不仅显著影响控制反应热力学和动力学的能垒,还决定了4-MPY-银界面处光驱动电荷转移的方向性,这在反应机制所涉及的化学贡献中至关重要。此外,观察到吸附分子周围有显著的场增强(电磁贡献),但发现其不足以改变基态热力学。相反,它引发并放大了光驱动电荷转移,从而调节了等离子体-分子混合系统中激发态的反应性。这项研究阐明了银表面的质子化机制,突出了分子-表面和分子-分子-表面取向在等离子体催化中的作用。