Suppr超能文献

SIMAT:气相色谱-单离子监测-质谱数据分析工具。

SIMAT: GC-SIM-MS data analysis tool.

作者信息

Ranjbar Mohammad R Nezami, Di Poto Cristina, Wang Yue, Ressom Habtom W

机构信息

Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, USA.

Department of Oncology, Georgetown University, Washington DC, USA.

出版信息

BMC Bioinformatics. 2015 Aug 19;16:259. doi: 10.1186/s12859-015-0681-2.

Abstract

BACKGROUND

Gas chromatography coupled with mass spectrometry (GC-MS) is one of the technologies widely used for qualitative and quantitative analysis of small molecules. In particular, GC coupled to single quadrupole MS can be utilized for targeted analysis by selected ion monitoring (SIM). However, to our knowledge, there are no software tools specifically designed for analysis of GC-SIM-MS data. In this paper, we introduce a new R/Bioconductor package called SIMAT for quantitative analysis of the levels of targeted analytes. SIMAT provides guidance in choosing fragments for a list of targets. This is accomplished through an optimization algorithm that has the capability to select the most appropriate fragments from overlapping chromatographic peaks based on a pre-specified library of background analytes. The tool also allows visualization of the total ion chromatograms (TIC) of runs and extracted ion chromatograms (EIC) of analytes of interest. Moreover, retention index (RI) calibration can be performed and raw GC-SIM-MS data can be imported in netCDF or NIST mass spectral library (MSL) formats.

RESULTS

We evaluated the performance of SIMAT using two GC-SIM-MS datasets obtained by targeted analysis of: (1) plasma samples from 86 patients in a targeted metabolomic experiment; and (2) mixtures of internal standards spiked in plasma samples at varying concentrations in a method development study. Our results demonstrate that SIMAT offers alternative solutions to AMDIS and MetaboliteDetector to achieve accurate detection of targets and estimation of their relative intensities by analysis of GC-SIM-MS data.

CONCLUSIONS

We introduce a new R package called SIMAT that allows the selection of the optimal set of fragments and retention time windows for target analytes in GC-SIM-MS based analysis. Also, various functions and algorithms are implemented in the tool to: (1) read and import raw data and spectral libraries; (2) perform GC-SIM-MS data preprocessing; and (3) plot and visualize EICs and TICs.

摘要

背景

气相色谱-质谱联用(GC-MS)是广泛用于小分子定性和定量分析的技术之一。特别是,气相色谱与单四极杆质谱联用可通过选择离子监测(SIM)用于目标分析。然而,据我们所知,尚无专门设计用于分析GC-SIM-MS数据的软件工具。在本文中,我们介绍了一个名为SIMAT的新R/Bioconductor软件包,用于对目标分析物水平进行定量分析。SIMAT为目标列表选择片段提供指导。这是通过一种优化算法实现的,该算法能够根据预先指定的背景分析物库从重叠的色谱峰中选择最合适的片段。该工具还允许可视化运行的总离子色谱图(TIC)和感兴趣分析物的提取离子色谱图(EIC)。此外,可以进行保留指数(RI)校准,并且原始GC-SIM-MS数据可以以netCDF或NIST质谱库(MSL)格式导入。

结果

我们使用通过对以下对象进行目标分析获得的两个GC-SIM-MS数据集评估了SIMAT的性能:(1)在一项目标代谢组学实验中来自86名患者的血浆样本;以及(2)在一项方法开发研究中以不同浓度添加到血浆样本中的内标混合物。我们的结果表明,SIMAT为AMDIS和MetaboliteDetector提供了替代解决方案,通过分析GC-SIM-MS数据实现对目标的准确检测及其相对强度的估计。

结论

我们引入了一个名为SIMAT的新R软件包,该软件包允许在基于GC-SIM-MS的分析中为目标分析物选择最佳的片段集和保留时间窗口。此外,该工具还实现了各种功能和算法,以:(1)读取和导入原始数据及光谱库;(2)进行GC-SIM-MS数据预处理;以及(3)绘制和可视化EIC和TIC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e37/4539696/099b3e6ea12d/12859_2015_681_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验