Ghasemi Damavandi Hamidreza, Sen Gupta Ananya, Nelson Robert K, Reddy Christopher M
Department of Electrical Engineering, University of Iowa, 103 S Capitol Street, Iowa City, IA 52242 USA.
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543 USA.
Chem Cent J. 2016 Nov 28;10:75. doi: 10.1186/s13065-016-0211-y. eCollection 2016.
Comprehensive two-dimensional gas chromatography [Formula: see text] provides high-resolution separations across hundreds of compounds in a complex mixture, thus unlocking unprecedented information for intricate quantitative interpretation. We exploit this compound diversity across the [Formula: see text] topography to provide quantitative compound-cognizant interpretation beyond target compound analysis with petroleum forensics as a practical application. We focus on the [Formula: see text] topography of biomarker hydrocarbons, hopanes and steranes, as they are generally recalcitrant to weathering. We introduce peak topography maps (PTM) and topography partitioning techniques that consider a notably broader and more diverse range of target and non-target biomarker compounds compared to traditional approaches that consider approximately 20 biomarker ratios. Specifically, we consider a range of 33-154 target and non-target biomarkers with highest-to-lowest peak ratio within an injection ranging from 4.86 to 19.6 (precise numbers depend on biomarker diversity of individual injections). We also provide a robust quantitative measure for directly determining "match" between samples, without necessitating training data sets.
We validate our methods across 34 [Formula: see text] injections from a diverse portfolio of petroleum sources, and provide quantitative comparison of performance against established statistical methods such as principal components analysis (PCA). Our data set includes a wide range of samples collected following the 2010 disaster that released approximately 160 million gallons of crude oil from the Macondo well (MW). Samples that were clearly collected following this disaster exhibit statistically significant match [Formula: see text] using PTM-based interpretation against other closely related sources. PTM-based interpretation also provides higher differentiation between closely correlated but distinct sources than obtained using PCA-based statistical comparisons. In addition to results based on this experimental field data, we also provide extentive perturbation analysis of the PTM method over numerical simulations that introduce random variability of peak locations over the [Formula: see text] biomarker ROI image of the MW pre-spill sample (sample [Formula: see text] in Additional file 4: Table S1). We compare the robustness of the cross-PTM score against peak location variability in both dimensions and compare the results against PCA analysis over the same set of simulated images. Detailed description of the simulation experiment and discussion of results are provided in Additional file 1: Section S8.
We provide a peak-cognizant informational framework for quantitative interpretation of [Formula: see text] topography. Proposed topographic analysis enables [Formula: see text] forensic interpretation across target petroleum biomarkers, while including the nuances of lesser-known non-target biomarkers clustered around the target peaks. This allows potential discovery of hitherto unknown connections between target and non-target biomarkers.
全二维气相色谱法[公式:见正文]能对复杂混合物中的数百种化合物进行高分辨率分离,从而为复杂的定量解释提供前所未有的信息。我们利用全二维气相色谱图的化合物多样性,以石油法医鉴定为实际应用,在目标化合物分析之外提供定量的、考虑化合物的解释。我们关注生物标志物烃类、藿烷和甾烷的全二维气相色谱图,因为它们通常对风化具有抗性。我们引入了峰形地图(PTM)和地形分区技术,与传统方法相比,这些技术考虑的目标和非目标生物标志物化合物范围更广、种类更多,传统方法通常考虑约20种生物标志物比率。具体而言,我们考虑了一系列33 - 154种目标和非目标生物标志物,在一次进样中最高峰与最低峰的比率范围为4.86至19.6(具体数字取决于每次进样的生物标志物多样性)。我们还提供了一种强大的定量方法,可直接确定样品之间的“匹配度”,而无需训练数据集。
我们在来自多种石油源的34次全二维气相色谱进样中验证了我们的方法,并与主成分分析(PCA)等既定统计方法进行了性能的定量比较。我们的数据集包括2010年灾难后收集的大量样品,那次灾难从马孔多油井(MW)泄漏了约1.6亿加仑原油。在此次灾难后明确收集的样品,使用基于PTM的解释与其他密切相关来源相比,显示出具有统计学意义的匹配[公式:见正文]。基于PTM的解释在区分密切相关但不同的来源方面也比基于PCA的统计比较提供了更高的分辨率。除了基于该实验现场数据的结果外,我们还对PTM方法在数值模拟上进行了广泛的扰动分析,这些模拟在MW溢油前样品的全二维气相色谱生物标志物感兴趣区域(ROI)图像上引入了峰位置的随机变化(补充文件4:表S1中的样品[公式:见正文])。我们比较了交叉PTM分数在两个维度上对峰位置变化的稳健性,并将结果与同一组模拟图像上的PCA分析结果进行比较。模拟实验的详细描述和结果讨论见补充文件1:S8节。
我们提供了一个考虑峰的信息框架,用于全二维气相色谱图的定量解释。提出的地形分析能够对目标石油生物标志物进行全二维气相色谱法医鉴定,同时包括围绕目标峰聚集的鲜为人知的非目标生物标志物的细微差别。这使得有可能发现目标和非目标生物标志物之间迄今未知的联系。