McGonigal Paul R, Deria Pravas, Hod Idan, Moghadam Peyman Z, Avestro Alyssa-Jennifer, Horwitz Noah E, Gibbs-Hall Ian C, Blackburn Anthea K, Chen Dongyang, Botros Youssry Y, Wasielewski Michael R, Snurr Randall Q, Hupp Joseph T, Farha Omar K, Stoddart J Fraser
Department of Chemistry, Northwestern University, Evanston, IL 60208;
Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208;
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11161-8. doi: 10.1073/pnas.1514485112. Epub 2015 Aug 17.
The organization of trisradical rotaxanes within the channels of a Zr6-based metal-organic framework (NU-1000) has been achieved postsynthetically by solvent-assisted ligand incorporation. Robust Zr(IV)-carboxylate bonds are forged between the Zr clusters of NU-1000 and carboxylic acid groups of rotaxane precursors (semirotaxanes) as part of this building block replacement strategy. Ultraviolet-visible-near-infrared (UV-Vis-NIR), electron paramagnetic resonance (EPR), and 1H nuclear magnetic resonance (NMR) spectroscopies all confirm the capture of redox-active rotaxanes within the mesoscale hexagonal channels of NU-1000. Cyclic voltammetry measurements performed on electroactive thin films of the resulting material indicate that redox-active viologen subunits located on the rotaxane components can be accessed electrochemically in the solid state. In contradistinction to previous methods, this strategy for the incorporation of mechanically interlocked molecules within porous materials circumvents the need for de novo synthesis of a metal-organic framework, making it a particularly convenient approach for the design and creation of solid-state molecular switches and machines. The results presented here provide proof-of-concept for the application of postsynthetic transformations in the integration of dynamic molecular machines with robust porous frameworks.
通过溶剂辅助配体掺入,在合成后实现了三自由基轮烷在基于Zr6的金属有机框架(NU-1000)通道内的组装。作为这种构建块替换策略的一部分,在NU-1000的Zr簇与轮烷前体(半轮烷)的羧酸基团之间形成了坚固的Zr(IV)-羧酸盐键。紫外-可见-近红外(UV-Vis-NIR)光谱、电子顺磁共振(EPR)光谱和1H核磁共振(NMR)光谱均证实了在NU-1000的中尺度六边形通道内捕获了具有氧化还原活性的轮烷。对所得材料的电活性薄膜进行的循环伏安法测量表明,位于轮烷组分上的具有氧化还原活性的紫精亚基在固态下可通过电化学方式访问。与先前的方法不同,这种将机械互锁分子掺入多孔材料的策略避免了从头合成金属有机框架的需要,使其成为设计和创建固态分子开关和机器的特别便捷的方法。此处展示的结果为合成后转化在将动态分子机器与坚固的多孔框架整合中的应用提供了概念验证。