Suppr超能文献

相似文献

1
Roles of multiple-proton transfer pathways and proton-coupled electron transfer in the reactivity of the bis-FeIV state of MauG.
Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):10896-901. doi: 10.1073/pnas.1510986112. Epub 2015 Aug 17.
3
A Suicide Mutation Affecting Proton Transfers to High-Valent Hemes Causes Inactivation of MauG during Catalysis.
Biochemistry. 2016 Oct 11;55(40):5738-5745. doi: 10.1021/acs.biochem.6b00816. Epub 2016 Sep 26.
6
Tryptophan-mediated charge-resonance stabilization in the bis-Fe(IV) redox state of MauG.
Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9639-44. doi: 10.1073/pnas.1301544110. Epub 2013 May 29.
7
Carboxyl group of Glu113 is required for stabilization of the diferrous and bis-Fe(IV) states of MauG.
Biochemistry. 2013 Sep 17;52(37):6358-67. doi: 10.1021/bi400905s. Epub 2013 Aug 30.
10
Crystal structure of the pristine peroxidase ferryl center and its relevance to proton-coupled electron transfer.
Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):1226-31. doi: 10.1073/pnas.1521664113. Epub 2016 Jan 19.

引用本文的文献

1
Regulation of ferryl reactivity by the cytochrome P450 decarboxylase OleT.
J Inorg Biochem. 2025 Sep;270:112912. doi: 10.1016/j.jinorgbio.2025.112912. Epub 2025 Apr 4.
2
Protein-Derived Cofactors Revisited: Empowering Amino Acid Residues with New Functions.
Biochemistry. 2018 Jun 5;57(22):3115-3125. doi: 10.1021/acs.biochem.8b00123. Epub 2018 Mar 6.
3
Radical Trapping Study of the Relaxation of -Fe(IV) MauG.
React Oxyg Species (Apex). 2018 Jan;5(13):46-55. Epub 2018 Jan 1.
5
Reactivity of the copper(iii)-hydroxide unit with phenols.
Chem Sci. 2017 Feb 1;8(2):1075-1085. doi: 10.1039/c6sc03039d. Epub 2016 Sep 27.
6
Properties of the high-spin heme of MauG are altered by binding of preMADH at the protein surface 40 Å away.
FEBS Lett. 2017 Jun;591(11):1566-1572. doi: 10.1002/1873-3468.12666. Epub 2017 May 23.
8
Direct visualization of a Fe(IV)-OH intermediate in a heme enzyme.
Nat Commun. 2016 Nov 29;7:13445. doi: 10.1038/ncomms13445.
9
A Suicide Mutation Affecting Proton Transfers to High-Valent Hemes Causes Inactivation of MauG during Catalysis.
Biochemistry. 2016 Oct 11;55(40):5738-5745. doi: 10.1021/acs.biochem.6b00816. Epub 2016 Sep 26.
10
Mechanism of protein oxidative damage that is coupled to long-range electron transfer to high-valent haems.
Biochem J. 2016 Jun 15;473(12):1769-75. doi: 10.1042/BCJ20160047. Epub 2016 Apr 13.

本文引用的文献

2
Probing bis-Fe(IV) MauG: experimental evidence for the long-range charge-resonance model.
Angew Chem Int Ed Engl. 2015 Mar 16;54(12):3692-6. doi: 10.1002/anie.201410247. Epub 2015 Jan 28.
3
Site-directed mutagenesis of Gln103 reveals the influence of this residue on the redox properties and stability of MauG.
Biochemistry. 2014 Mar 4;53(8):1342-9. doi: 10.1021/bi5000349. Epub 2014 Feb 19.
4
Oxidative damage in MauG: implications for the control of high-valent iron species and radical propagation pathways.
Biochemistry. 2013 Dec 31;52(52):9447-55. doi: 10.1021/bi401441h. Epub 2013 Dec 16.
6
Carboxyl group of Glu113 is required for stabilization of the diferrous and bis-Fe(IV) states of MauG.
Biochemistry. 2013 Sep 17;52(37):6358-67. doi: 10.1021/bi400905s. Epub 2013 Aug 30.
7
Posttranslational biosynthesis of the protein-derived cofactor tryptophan tryptophylquinone.
Annu Rev Biochem. 2013;82:531-50. doi: 10.1146/annurev-biochem-051110-133601.
8
Tryptophan-mediated charge-resonance stabilization in the bis-Fe(IV) redox state of MauG.
Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9639-44. doi: 10.1073/pnas.1301544110. Epub 2013 May 29.
9
Diradical intermediate within the context of tryptophan tryptophylquinone biosynthesis.
Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4569-73. doi: 10.1073/pnas.1215011110. Epub 2013 Mar 4.
10
Reduction of ferrylmyoglobin by hydrogen sulfide. Kinetics in relation to meat greening.
J Agric Food Chem. 2013 Mar 20;61(11):2883-8. doi: 10.1021/jf305363e. Epub 2013 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验