Suppr超能文献

细胞色素P450脱羧酶OleT对高铁血红素反应性的调控

Regulation of ferryl reactivity by the cytochrome P450 decarboxylase OleT.

作者信息

Gering Hannah E, Manley Olivia M, Holwerda Alexis J, Grant Job L, Ratigan Steven C, Makris Thomas M

机构信息

Department of Structural and Molecular Biochemistry, North Carolina State University, Raleigh, NC 27695, United States.

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States.

出版信息

J Inorg Biochem. 2025 Sep;270:112912. doi: 10.1016/j.jinorgbio.2025.112912. Epub 2025 Apr 4.

Abstract

The cytochrome P450 OleT catalyzes the decarboxylation of long-chain fatty acid substrates to produce terminal alkenes using hydrogen peroxide as a co-substrate. The facile activation of peroxide to form Compound I in the first step of the reaction, and subsequent CC bond cleavage mediated by Compound II, provides a unique opportunity to visualize both ferryl intermediates using transient kinetic approaches. Analysis of the Arrhenius behavior yields activation barriers of ∼6 kcal/mol and ∼ 18 kcal/mol for the decay of Compound I and Compound II respectively. The influence of the secondary coordination sphere, probed through site-directed mutagenesis approaches, suggests that restriction of the donor-acceptor distance contributes to the reactivity of Compound I. The reactivity of Compound II was further probed using kinetic solvent isotope effect approaches, confirming that the large barrier owes to a proton-gated mechanism in the decarboxylation reaction coordinate. Hydrogen-bonding to an active-site histidine (H85) in the distal pocket plays a key role in this process.

摘要

细胞色素P450 OleT催化长链脂肪酸底物的脱羧反应,以过氧化氢作为共底物生成末端烯烃。在反应的第一步中,过氧化物易于活化形成化合物I,随后由化合物II介导的碳 - 碳键裂解,为使用瞬态动力学方法可视化两种铁氧中间体提供了独特的机会。对阿伦尼乌斯行为的分析分别得出化合物I和化合物II衰变的活化能垒约为6千卡/摩尔和约18千卡/摩尔。通过定点诱变方法探究二级配位层的影响,表明供体 - 受体距离的限制有助于化合物I的反应活性。使用动力学溶剂同位素效应方法进一步探究化合物II的反应活性,证实了较大的能垒归因于脱羧反应坐标中的质子门控机制。在这个过程中,与远端口袋中活性位点组氨酸(H85)的氢键作用起着关键作用。

相似文献

1
Regulation of ferryl reactivity by the cytochrome P450 decarboxylase OleT.
J Inorg Biochem. 2025 Sep;270:112912. doi: 10.1016/j.jinorgbio.2025.112912. Epub 2025 Apr 4.
2
Unique structural features define the decarboxylation activity of a CYP152 fatty acid decarboxylase from Lacicoccus alkaliphilus.
J Biol Chem. 2025 Jul;301(7):110397. doi: 10.1016/j.jbc.2025.110397. Epub 2025 Jun 19.
3
The Enigmatic P450 Decarboxylase OleT Is Capable of, but Evolved To Frustrate, Oxygen Rebound Chemistry.
Biochemistry. 2017 Jul 5;56(26):3347-3357. doi: 10.1021/acs.biochem.7b00338. Epub 2017 Jun 26.
5
Expanding the substrate scope and reactivity of cytochrome P450 OleT.
Biochem Biophys Res Commun. 2016 Aug 5;476(4):462-466. doi: 10.1016/j.bbrc.2016.05.145. Epub 2016 May 28.
6
Enhancing ferryl accumulation in HO-dependent cytochrome P450s.
J Inorg Biochem. 2024 Mar;252:112458. doi: 10.1016/j.jinorgbio.2023.112458. Epub 2023 Dec 20.
7
A Distal Loop Controls Product Release and Chemo- and Regioselectivity in Cytochrome P450 Decarboxylases.
Biochemistry. 2018 Jan 23;57(3):344-353. doi: 10.1021/acs.biochem.7b01065. Epub 2017 Dec 19.
8
Catalytic strategy for carbon-carbon bond scission by the cytochrome P450 OleT.
Proc Natl Acad Sci U S A. 2016 Sep 6;113(36):10049-54. doi: 10.1073/pnas.1606294113. Epub 2016 Aug 23.

本文引用的文献

3
Enhancing ferryl accumulation in HO-dependent cytochrome P450s.
J Inorg Biochem. 2024 Mar;252:112458. doi: 10.1016/j.jinorgbio.2023.112458. Epub 2023 Dec 20.
4
O Electron Nuclear Double Resonance Analysis of Compound I: Inverse Correlation between Oxygen Spin Population and Electron Donation.
J Am Chem Soc. 2022 Oct 26;144(42):19272-19283. doi: 10.1021/jacs.2c05459. Epub 2022 Oct 14.
5
Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere.
Chem Rev. 2022 Jul 27;122(14):11974-12045. doi: 10.1021/acs.chemrev.2c00106. Epub 2022 Jul 11.
6
Experimental and Theoretical Examination of the Kinetic Isotope Effect in Cytochrome P450 Decarboxylase OleT.
J Phys Chem B. 2022 May 19;126(19):3493-3504. doi: 10.1021/acs.jpcb.1c10280. Epub 2022 May 4.
7
Modeling the Ligand Effect on the Structure of CYP 450 Within the Density Functional Theory.
J Phys Chem A. 2022 May 12;126(18):2818-2824. doi: 10.1021/acs.jpca.2c01783. Epub 2022 May 2.
10
How external perturbations affect the chemoselectivity of substrate activation by cytochrome P450 OleT.
Phys Chem Chem Phys. 2020 Dec 7;22(46):27178-27190. doi: 10.1039/d0cp05169a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验