Gering Hannah E, Manley Olivia M, Holwerda Alexis J, Grant Job L, Ratigan Steven C, Makris Thomas M
Department of Structural and Molecular Biochemistry, North Carolina State University, Raleigh, NC 27695, United States.
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States.
J Inorg Biochem. 2025 Sep;270:112912. doi: 10.1016/j.jinorgbio.2025.112912. Epub 2025 Apr 4.
The cytochrome P450 OleT catalyzes the decarboxylation of long-chain fatty acid substrates to produce terminal alkenes using hydrogen peroxide as a co-substrate. The facile activation of peroxide to form Compound I in the first step of the reaction, and subsequent CC bond cleavage mediated by Compound II, provides a unique opportunity to visualize both ferryl intermediates using transient kinetic approaches. Analysis of the Arrhenius behavior yields activation barriers of ∼6 kcal/mol and ∼ 18 kcal/mol for the decay of Compound I and Compound II respectively. The influence of the secondary coordination sphere, probed through site-directed mutagenesis approaches, suggests that restriction of the donor-acceptor distance contributes to the reactivity of Compound I. The reactivity of Compound II was further probed using kinetic solvent isotope effect approaches, confirming that the large barrier owes to a proton-gated mechanism in the decarboxylation reaction coordinate. Hydrogen-bonding to an active-site histidine (H85) in the distal pocket plays a key role in this process.
细胞色素P450 OleT催化长链脂肪酸底物的脱羧反应,以过氧化氢作为共底物生成末端烯烃。在反应的第一步中,过氧化物易于活化形成化合物I,随后由化合物II介导的碳 - 碳键裂解,为使用瞬态动力学方法可视化两种铁氧中间体提供了独特的机会。对阿伦尼乌斯行为的分析分别得出化合物I和化合物II衰变的活化能垒约为6千卡/摩尔和约18千卡/摩尔。通过定点诱变方法探究二级配位层的影响,表明供体 - 受体距离的限制有助于化合物I的反应活性。使用动力学溶剂同位素效应方法进一步探究化合物II的反应活性,证实了较大的能垒归因于脱羧反应坐标中的质子门控机制。在这个过程中,与远端口袋中活性位点组氨酸(H85)的氢键作用起着关键作用。