Suppr超能文献

利用迈克尔型加成反应设计硫醇和光敏感可降解水凝胶

Design of Thiol- and Light-sensitive Degradable Hydrogels using Michael-type Addition Reactions.

作者信息

Kharkar Prathamesh M, Kiick Kristi L, Kloxin April M

机构信息

Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.

Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA ; Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA ; Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA.

出版信息

Polym Chem. 2015 Aug 21;6(31):5565-5574. doi: 10.1039/C5PY00750J.

Abstract

Injectable depots that respond to exogenous and endogenous stimuli present an attractive strategy for tunable, patient-specific drug delivery. Here, the design of injectable and multimodal degradable hydrogels that respond to externally applied light and physiological stimuli, specifically aqueous and reducing microenvironments, is reported. Rapid hydrogel formation was achieved using a thiol-maleimide click reaction between multifunctional poly(ethylene glycol) macromers. Hydrogel degradation kinetics in response to externally applied cytocompatible light, reducing conditions, and hydrolysis were characterized, and degradation of the gel was controlled over multiple time scales from seconds to days. Further, tailored release of an encapsulated model cargo, fluorescent nanobeads, was demonstrated.

摘要

可响应外源性和内源性刺激的注射剂储存库为可调谐、针对患者的药物递送提供了一种有吸引力的策略。在此,报道了一种可注射的多模态可降解水凝胶的设计,该水凝胶可响应外部施加的光和生理刺激,特别是水性和还原性微环境。通过多功能聚乙二醇大分子单体之间的硫醇-马来酰亚胺点击反应实现了水凝胶的快速形成。对响应外部施加的细胞相容性光、还原条件和水解的水凝胶降解动力学进行了表征,并且凝胶的降解在从秒到天的多个时间尺度上得到控制。此外,还展示了封装的模型货物荧光纳米珠的定制释放。

相似文献

1
Design of Thiol- and Light-sensitive Degradable Hydrogels using Michael-type Addition Reactions.
Polym Chem. 2015 Aug 21;6(31):5565-5574. doi: 10.1039/C5PY00750J.
2
Degradable poly(ethylene glycol) (PEG)-based hydrogels for spatiotemporal control of siRNA/nanoparticle delivery.
J Control Release. 2018 Oct 10;287:58-66. doi: 10.1016/j.jconrel.2018.08.002. Epub 2018 Aug 3.
3
Thiol-ene click hydrogels for therapeutic delivery.
ACS Biomater Sci Eng. 2016 Feb 8;2(2):165-179. doi: 10.1021/acsbiomaterials.5b00420. Epub 2016 Jan 11.
4
Controlling the Release of Small, Bioactive Proteins via Dual Mechanisms with Therapeutic Potential.
Adv Healthc Mater. 2017 Dec;6(24). doi: 10.1002/adhm.201700713. Epub 2017 Oct 12.
7
In situ forming poly(ethylene glycol)-based hydrogels via thiol-maleimide Michael-type addition.
J Biomed Mater Res A. 2011 Aug;98(2):201-11. doi: 10.1002/jbm.a.33106. Epub 2011 May 4.
8
β-Lactamase-Responsive Hydrogel Drug Delivery Platform for Bacteria-Triggered Cargo Release.
ACS Appl Mater Interfaces. 2022 Jun 22;14(24):27538-27550. doi: 10.1021/acsami.2c02614. Epub 2022 Jun 8.
9
Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture.
Acta Biomater. 2014 Jan;10(1):104-14. doi: 10.1016/j.actbio.2013.08.044. Epub 2013 Sep 8.
10
Cross-linking and degradation of step-growth hydrogels formed by thiol-ene photoclick chemistry.
Biomacromolecules. 2012 Jul 9;13(7):2003-12. doi: 10.1021/bm300752j. Epub 2012 Jun 22.

引用本文的文献

2
Diverse reactivity of maleimides in polymer science and beyond.
Polym Int. 2025 Apr;74(4):296-306. doi: 10.1002/pi.6715. Epub 2024 Nov 5.
3
Metal-Free Click-Chemistry: A Powerful Tool for Fabricating Hydrogels for Biomedical Applications.
Bioconjug Chem. 2024 Apr 17;35(4):433-452. doi: 10.1021/acs.bioconjchem.4c00003. Epub 2024 Mar 22.
5
The application and prospects of 3D printable microgel in biomedical science and engineering.
Int J Bioprint. 2023 May 16;9(5):753. doi: 10.18063/ijb.753. eCollection 2023.
6
Three-dimensional bioprinting of functional β-islet-like constructs.
Int J Bioprint. 2023 Jan 9;9(2):665. doi: 10.18063/ijb.v9i2.665. eCollection 2023.
7
Supramolecular hybrid hydrogels as rapidly on-demand dissoluble, self-healing, and biocompatible burn dressings.
Bioact Mater. 2022 Sep 27;25:415-429. doi: 10.1016/j.bioactmat.2022.09.003. eCollection 2023 Jul.
8
Graphene Oxide-alginate Hydrogel for Drawing Water through an Osmotic Membrane.
ACS Omega. 2022 Oct 18;7(43):38337-38346. doi: 10.1021/acsomega.2c03138. eCollection 2022 Nov 1.
9
Thia-Michael Reaction: The Route to Promising Covalent Adaptable Networks.
Polymers (Basel). 2022 Oct 21;14(20):4457. doi: 10.3390/polym14204457.
10
Redox-Responsive Drug Delivery Systems: A Chemical Perspective.
Nanomaterials (Basel). 2022 Sep 14;12(18):3183. doi: 10.3390/nano12183183.

本文引用的文献

1
Soft biological materials and their impact on cell function.
Soft Matter. 2007 Feb 14;3(3):299-306. doi: 10.1039/b610522j.
2
Fabrications and Applications of Stimulus-Responsive Polymer Films and Patterns on Surfaces: A Review.
Materials (Basel). 2014 Jan 28;7(2):805-875. doi: 10.3390/ma7020805.
3
Decreasing matrix modulus of PEG hydrogels induces a vascular phenotype in human cord blood stem cells.
Biomaterials. 2015 Sep;62:24-34. doi: 10.1016/j.biomaterials.2015.05.021. Epub 2015 May 15.
4
Dually degradable click hydrogels for controlled degradation and protein release.
J Mater Chem B. 2014;2(34):5511-5521. doi: 10.1039/c4tb00496e.
5
A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels.
Nat Mater. 2015 May;14(5):523-31. doi: 10.1038/nmat4219. Epub 2015 Feb 23.
6
Interfacial Bioorthogonal Cross-Linking.
ACS Macro Lett. 2014 Aug 19;3(8):727-731. doi: 10.1021/mz5002993. Epub 2014 Jul 14.
7
ScFv-decorated PEG-PLA-based nanoparticles for enhanced siRNA delivery to Her2⁺ breast cancer.
Adv Healthc Mater. 2014 Nov;3(11):1792-803. doi: 10.1002/adhm.201400037. Epub 2014 Jun 20.
8
Photodegradable hydrogels for capture, detection, and release of live cells.
Angew Chem Int Ed Engl. 2014 Jul 28;53(31):8221-4. doi: 10.1002/anie.201404323. Epub 2014 Jun 16.
9
Modeling Controlled Photodegradation in Optically Thick Hydrogels.
J Polym Sci A Polym Chem. 2013 May 1;51(9):1899-1911. doi: 10.1002/pola.26574.
10
Mechanical Properties and Degradation of Chain and Step Polymerized Photodegradable Hydrogels.
Macromolecules. 2013 Apr 9;46(7):2785-92. doi: 10.1021/ma302522x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验