Suppr超能文献

通过具有治疗潜力的双重机制控制小生物活性蛋白的释放。

Controlling the Release of Small, Bioactive Proteins via Dual Mechanisms with Therapeutic Potential.

机构信息

Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA.

Nemours-Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE, 19803, USA.

出版信息

Adv Healthc Mater. 2017 Dec;6(24). doi: 10.1002/adhm.201700713. Epub 2017 Oct 12.

Abstract

Injectable delivery systems that respond to biologically relevant stimuli present an attractive strategy for tailorable drug release. Here, the design and synthesis of unique polymers are reported for the creation of hydrogels that are formed in situ and degrade in response to clinically relevant endogenous and exogenous stimuli, specifically reducing microenvironments and externally applied light. Hydrogels are formed with polyethylene glycol and heparin-based polymers using a Michael-type addition reaction. The resulting hydrogels are investigated for the local controlled release of low molecular weight proteins (e.g., growth factors and cytokines), which are of interest for regulating various cellular functions and fates in vivo yet remain difficult to deliver. Incorporation of reduction-sensitive linkages and light-degradable linkages affords significant changes in the release profiles of fibroblast growth factor-2 (FGF-2) in the presence of the reducing agent glutathione or light, respectively. The bioactivity of the released FGF-2 is comparable to pristine FGF-2, indicating the ability of these hydrogels to retain the bioactivity of cargo molecules during encapsulation and release. Further, in vivo studies demonstrate degradation-mediated release of FGF-2. Overall, our studies demonstrate the potential of these unique stimuli-responsive chemistries for controlling the local release of low molecular weight proteins in response to clinically relevant stimuli.

摘要

可响应生物相关刺激的注射型递送系统为可定制药物释放提供了一种有吸引力的策略。在这里,我们报告了独特聚合物的设计和合成,用于创建可原位形成并响应临床相关内源性和外源性刺激(特别是减少微环境和外部施加的光)而降解的水凝胶。水凝胶是使用迈克尔型加成反应由聚乙二醇和基于肝素的聚合物形成的。研究了所得水凝胶在局部控制释放低分子量蛋白质(例如生长因子和细胞因子)方面的性能,这些蛋白质对于调节体内各种细胞功能和命运很重要,但仍难以递送。还原敏感性键和光降解键的掺入分别在还原剂谷胱甘肽或光的存在下,使成纤维细胞生长因子-2(FGF-2)的释放曲线发生显著变化。释放的 FGF-2 的生物活性与原始 FGF-2 相当,表明这些水凝胶在封装和释放过程中能够保持货物分子的生物活性。此外,体内研究表明 FGF-2 可通过降解介导释放。总体而言,我们的研究表明这些独特的刺激响应化学物质具有控制低分子量蛋白质局部释放的潜力,可响应临床相关刺激。

相似文献

1
Controlling the Release of Small, Bioactive Proteins via Dual Mechanisms with Therapeutic Potential.
Adv Healthc Mater. 2017 Dec;6(24). doi: 10.1002/adhm.201700713. Epub 2017 Oct 12.
2
Sustained release of multicomponent platelet-rich plasma proteins from hydrolytically degradable PEG hydrogels.
J Biomed Mater Res A. 2017 Dec;105(12):3304-3314. doi: 10.1002/jbm.a.36187. Epub 2017 Sep 19.
3
Injectable Supramolecular Ureidopyrimidinone Hydrogels Provide Sustained Release of Extracellular Vesicle Therapeutics.
Adv Healthc Mater. 2019 Oct;8(20):e1900847. doi: 10.1002/adhm.201900847. Epub 2019 Sep 26.
5
Heparin-functionalized hydrogels as growth factor-signaling substrates.
J Biomed Mater Res A. 2021 Mar;109(3):374-384. doi: 10.1002/jbm.a.37030. Epub 2020 Jun 26.
6
Injectable gelatin derivative hydrogels with sustained vascular endothelial growth factor release for induced angiogenesis.
Acta Biomater. 2015 Feb;13:88-100. doi: 10.1016/j.actbio.2014.11.002. Epub 2014 Nov 8.
8
Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor.
Biomaterials. 2005 Oct;26(30):6054-67. doi: 10.1016/j.biomaterials.2005.03.012. Epub 2005 Apr 22.
9
Degradable poly(ethylene glycol) (PEG)-based hydrogels for spatiotemporal control of siRNA/nanoparticle delivery.
J Control Release. 2018 Oct 10;287:58-66. doi: 10.1016/j.jconrel.2018.08.002. Epub 2018 Aug 3.

引用本文的文献

1
Extracellular Vesicles-in-Hydrogel (EViH) targeting pathophysiology for tissue repair.
Bioact Mater. 2024 Oct 23;44:283-318. doi: 10.1016/j.bioactmat.2024.10.017. eCollection 2025 Feb.
2
Revolutionizing Intervertebral Disc Regeneration: Advances and Future Directions in Three-Dimensional Bioprinting of Hydrogel Scaffolds.
Int J Nanomedicine. 2024 Oct 21;19:10661-10684. doi: 10.2147/IJN.S469302. eCollection 2024.
3
Mechanobiology of cancer cell responsiveness to chemotherapy and immunotherapy: Mechanistic insights and biomaterial platforms.
Adv Drug Deliv Rev. 2023 May;196:114771. doi: 10.1016/j.addr.2023.114771. Epub 2023 Mar 6.
4
HYDRHA: Hydrogels of hyaluronic acid. New biomedical approaches in cancer, neurodegenerative diseases, and tissue engineering.
Mater Today Bio. 2022 Oct 8;17:100453. doi: 10.1016/j.mtbio.2022.100453. eCollection 2022 Dec 15.
5
Redox-Responsive Drug Delivery Systems: A Chemical Perspective.
Nanomaterials (Basel). 2022 Sep 14;12(18):3183. doi: 10.3390/nano12183183.
7
Lab-on-a-Contact Lens: Recent Advances and Future Opportunities in Diagnostics and Therapeutics.
Adv Mater. 2022 Jun;34(24):e2108389. doi: 10.1002/adma.202108389. Epub 2022 Apr 11.
8
On-demand and tunable dual wavelength release of antibody using light-responsive hydrogels.
ACS Appl Bio Mater. 2020 Oct 19;3(10):6944-6958. doi: 10.1021/acsabm.0c00823. Epub 2020 Sep 17.
9
Multi-stimuli-responsive, liposome-crosslinked poly(ethylene glycol) hydrogels for drug delivery.
J Biomater Sci Polym Ed. 2021 Apr;32(5):635-656. doi: 10.1080/09205063.2020.1855392. Epub 2020 Dec 22.
10
Injectable Hydrogel-Based Nanocomposites for Cardiovascular Diseases.
Front Bioeng Biotechnol. 2020 Mar 31;8:251. doi: 10.3389/fbioe.2020.00251. eCollection 2020.

本文引用的文献

1
Injectable Interpenetrating Network Hydrogels via Kinetically Orthogonal Reactive Mixing of Functionalized Polymeric Precursors.
ACS Macro Lett. 2015 Oct 20;4(10):1104-1109. doi: 10.1021/acsmacrolett.5b00362. Epub 2015 Sep 16.
2
Design Approaches to Myocardial and Vascular Tissue Engineering.
Annu Rev Biomed Eng. 2017 Jun 21;19:389-414. doi: 10.1146/annurev-bioeng-071516-044641. Epub 2017 May 3.
3
Thiol-ene click hydrogels for therapeutic delivery.
ACS Biomater Sci Eng. 2016 Feb 8;2(2):165-179. doi: 10.1021/acsbiomaterials.5b00420. Epub 2016 Jan 11.
4
Liposome-Cross-Linked Hybrid Hydrogels for Glutathione-Triggered Delivery of Multiple Cargo Molecules.
Biomacromolecules. 2016 Feb 8;17(2):601-14. doi: 10.1021/acs.biomac.5b01541. Epub 2016 Jan 25.
5
Near infrared light-responsive and injectable supramolecular hydrogels for on-demand drug delivery.
Chem Commun (Camb). 2016 Jan 18;52(5):978-81. doi: 10.1039/c5cc08391e.
6
Injectable Self-Healing Glucose-Responsive Hydrogels with pH-Regulated Mechanical Properties.
Adv Mater. 2016 Jan 6;28(1):86-91. doi: 10.1002/adma.201502902. Epub 2015 Nov 5.
7
Design of Thiol- and Light-sensitive Degradable Hydrogels using Michael-type Addition Reactions.
Polym Chem. 2015 Aug 21;6(31):5565-5574. doi: 10.1039/C5PY00750J.
9
Hydrogels for therapeutic cardiovascular angiogenesis.
Adv Drug Deliv Rev. 2016 Jan 15;96:31-9. doi: 10.1016/j.addr.2015.07.003. Epub 2015 Jul 23.
10
Microstructured dextran hydrogels for burst-free sustained release of PEGylated protein drugs.
Biomaterials. 2015 Sep;63:146-57. doi: 10.1016/j.biomaterials.2015.06.008. Epub 2015 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验