Suppr超能文献

用于治疗递送的硫醇-烯点击水凝胶。

Thiol-ene click hydrogels for therapeutic delivery.

作者信息

Kharkar Prathamesh M, Rehmann Matthew S, Skeens Kelsi M, Maverakis Emanual, Kloxin April M

机构信息

Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA.

Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA.

出版信息

ACS Biomater Sci Eng. 2016 Feb 8;2(2):165-179. doi: 10.1021/acsbiomaterials.5b00420. Epub 2016 Jan 11.

Abstract

Hydrogels are of growing interest for the delivery of therapeutics to specific sites in the body. For use as a delivery vehicle, hydrophilic precursors are usually laden with bioactive moieties and then directly injected to the site of interest for gel formation and controlled release dictated by precursor design. Hydrogels formed by thiol-ene click reactions are attractive for local controlled release of therapeutics owing to their rapid reaction rate and efficiency under mild aqueous conditions, enabling formation of gels with tunable properties often responsive to environmental cues. Herein, we will review the wide range of applications for thiol-ene hydrogels, from the prolonged release of anti-inflammatory drugs in the spine to the release of protein-based therapeutics in response to cell-secreted enzymes, with a focus on their clinical relevance. We will also provide a brief overview of thiol-ene click chemistry and discuss the available alkene chemistries pertinent to macromolecule functionalization and hydrogel formation. These chemistries include functional groups susceptible to Michael type reactions relevant for injection and radically-mediated reactions for greater temporal control of formation at sites of interest using light. Additionally, mechanisms for the encapsulation and controlled release of therapeutic cargoes are reviewed, including tuning the mesh size of the hydrogel initially and temporally for cargo entrapment and release and covalent tethering of the cargo with degradable linkers or affinity binding sequences to mediate release. Finally, myriad thiol-ene hydrogels and their specific applications also are discussed to give a sampling of the current and future utilization of this chemistry for delivery of therapeutics, such as small molecule drugs, peptides, and biologics.

摘要

水凝胶在将治疗剂递送至体内特定部位方面越来越受到关注。作为一种递送载体,亲水性前体通常负载有生物活性部分,然后直接注射到感兴趣的部位,以形成凝胶并根据前体设计进行控释。通过硫醇-烯点击反应形成的水凝胶因其在温和水性条件下的快速反应速率和效率而对治疗剂的局部控释具有吸引力,能够形成具有可调节性质且通常对环境线索有响应的凝胶。在此,我们将综述硫醇-烯水凝胶的广泛应用,从脊柱中抗炎药物的长效释放到响应细胞分泌酶释放基于蛋白质的治疗剂,重点关注其临床相关性。我们还将简要概述硫醇-烯点击化学,并讨论与大分子功能化和水凝胶形成相关的可用烯烃化学。这些化学包括易发生与注射相关的迈克尔型反应的官能团以及用于使用光在感兴趣部位对形成进行更大时间控制的自由基介导反应。此外,还综述了治疗性货物的包封和控释机制,包括最初和随时间调整水凝胶的网孔大小以捕获和释放货物,以及将货物与可降解连接子或亲和结合序列共价连接以介导释放。最后,还讨论了无数的硫醇-烯水凝胶及其具体应用,以举例说明这种化学在递送治疗剂(如小分子药物、肽和生物制品)方面的当前和未来应用。

相似文献

1
Thiol-ene click hydrogels for therapeutic delivery.
ACS Biomater Sci Eng. 2016 Feb 8;2(2):165-179. doi: 10.1021/acsbiomaterials.5b00420. Epub 2016 Jan 11.
2
PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids.
Biomaterials. 2011 Dec;32(36):9685-95. doi: 10.1016/j.biomaterials.2011.08.083. Epub 2011 Sep 14.
5
Modulation of Thiol-Ene Coupling by the Molecular Environment of Polymer Backbones for Hydrogel Formation and Cell Encapsulation.
ACS Appl Bio Mater. 2020 Sep 21;3(9):6497-6509. doi: 10.1021/acsabm.0c00908. Epub 2020 Sep 10.
6
Cross-linking and degradation of step-growth hydrogels formed by thiol-ene photoclick chemistry.
Biomacromolecules. 2012 Jul 9;13(7):2003-12. doi: 10.1021/bm300752j. Epub 2012 Jun 22.
7
Interfacial thiol-ene photoclick reactions for forming multilayer hydrogels.
ACS Appl Mater Interfaces. 2013 Mar 13;5(5):1673-80. doi: 10.1021/am302690t. Epub 2013 Feb 20.
9
Thiol-norbornene photo-click hydrogels for tissue engineering applications.
J Appl Polym Sci. 2015 Feb 20;132(8). doi: 10.1002/app.41563.

引用本文的文献

1
Light-based fabrication and 4D customization of hydrogel biomaterials.
Nat Rev Bioeng. 2025 Feb;3(2):159-180. doi: 10.1038/s44222-024-00234-w. Epub 2024 Sep 26.
3
Genetic Engineering of VHH Antibody Fragments for Efficient Site-Specific Conjugation to Polysaccharides.
Bioconjug Chem. 2025 Jun 18;36(6):1319-1328. doi: 10.1021/acs.bioconjchem.5c00167. Epub 2025 May 23.
5
Intraocular injectable hydrogels for the delivery of cells and nanoparticles.
Mater Today Bio. 2025 Apr 12;32:101767. doi: 10.1016/j.mtbio.2025.101767. eCollection 2025 Jun.
6
Cyclodextrins as multifunctional tools for advanced biomaterials in tissue repair and regeneration.
Bioact Mater. 2025 Mar 27;49:627-651. doi: 10.1016/j.bioactmat.2025.03.018. eCollection 2025 Jul.
7
Polymers and light: a love-hate relationship.
Chem Sci. 2025 Mar 17;16(13):5326-5352. doi: 10.1039/d5sc00997a. eCollection 2025 Mar 26.
8
Photo-responsive decellularized small intestine submucosa hydrogels.
Adv Funct Mater. 2024 Sep 4;34(36). doi: 10.1002/adfm.202401952. Epub 2024 Apr 18.
9
Spheroid-Hydrogel-Integrated Biomimetic System: A New Frontier in Advanced Three-Dimensional Cell Culture Technology.
Cells Tissues Organs. 2025;214(2):128-147. doi: 10.1159/000541416. Epub 2024 Sep 12.
10
Antibacterial Hydrogel Adhesives Based on Bifunctional Telechelic Dendritic-Linear-Dendritic Block Copolymers.
J Am Chem Soc. 2024 Jun 26;146(25):17240-17249. doi: 10.1021/jacs.4c03673. Epub 2024 Jun 12.

本文引用的文献

1
Design of Thiol- and Light-sensitive Degradable Hydrogels using Michael-type Addition Reactions.
Polym Chem. 2015 Aug 21;6(31):5565-5574. doi: 10.1039/C5PY00750J.
2
Temporally tunable, enzymatically responsive delivery of proangiogenic peptides from poly(ethylene glycol) hydrogels.
Adv Healthc Mater. 2015 Sep 16;4(13):2002-11. doi: 10.1002/adhm.201500304. Epub 2015 Jul 7.
4
Synergistic Effects of SDF-1α and BMP-2 Delivery from Proteolytically Degradable Hyaluronic Acid Hydrogels for Bone Repair.
Macromol Biosci. 2015 Sep;15(9):1218-23. doi: 10.1002/mabi.201500178. Epub 2015 Jun 8.
5
Recent advances in crosslinking chemistry of biomimetic poly(ethylene glycol) hydrogels.
RSC Adv. 2015 Jan 1;5(50):39844-398583. doi: 10.1039/C5RA05734E.
6
Photoclick Hydrogels Prepared from Functionalized Cyclodextrin and Poly(ethylene glycol) for Drug Delivery and in Situ Cell Encapsulation.
Biomacromolecules. 2015 Jul 13;16(7):1915-23. doi: 10.1021/acs.biomac.5b00471. Epub 2015 Jun 3.
7
Polymersome-based drug-delivery strategies for cancer therapeutics.
Ther Deliv. 2015;6(4):521-34. doi: 10.4155/tde.14.125.
8
Dually degradable click hydrogels for controlled degradation and protein release.
J Mater Chem B. 2014;2(34):5511-5521. doi: 10.1039/c4tb00496e.
9
Enzyme responsive drug delivery system based on mesoporous silica nanoparticles for tumor therapy in vivo.
Nanotechnology. 2015 Apr 10;26(14):145102. doi: 10.1088/0957-4484/26/14/145102. Epub 2015 Mar 19.
10
Additive manufacturing. Continuous liquid interface production of 3D objects.
Science. 2015 Mar 20;347(6228):1349-52. doi: 10.1126/science.aaa2397. Epub 2015 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验