Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany.
Neurobiol Dis. 2016 Jun;90:75-85. doi: 10.1016/j.nbd.2015.08.005. Epub 2015 Aug 16.
Fast-spiking, inhibitory interneurons - prototype is the parvalbumin-positive (PV+) basket cell - generate action potentials at high frequency and synchronize the activity of numerous excitatory principal neurons, such as pyramidal cells, during fast network oscillations by rhythmic inhibition. For this purpose, fast-spiking, PV+ interneurons have unique electrophysiological characteristics regarding action potential kinetics and ion conductances, which are associated with high energy expenditure. This is reflected in the neural ultrastructure by enrichment with mitochondria and cytochrome c oxidase, indicating the dependence on oxidative phosphorylation for adenosine-5'-triphosphate (ATP) generation. The high energy expenditure is most likely required for membrane ion transport in dendrites and the extensive axon arbor as well as for presynaptic release of neurotransmitter, gamma-aminobutyric acid (GABA). Fast-spiking, PV+ interneurons are central for the emergence of gamma oscillations (30-100Hz) that provide a fundamental mechanism of complex information processing during sensory perception, motor behavior and memory formation in networks of the hippocampus and the neocortex. Conversely, shortage in glucose and oxygen supply (metabolic stress) and/or excessive formation of reactive oxygen and nitrogen species (oxidative stress) may render these interneurons to be a vulnerable target. Dysfunction in fast-spiking, PV+ interneurons might set a low threshold for impairment of fast network oscillations and thus higher brain functions. This pathophysiological mechanism might be highly relevant for cerebral aging as well as various acute and chronic brain diseases, such as stroke, vascular cognitive impairment, epilepsy, Alzheimer's disease and schizophrenia.
快速放电抑制性中间神经元——以 parvalbumin 阳性(PV+)basket 细胞为原型——通过节律性抑制,以高频产生动作电位并同步大量兴奋性主神经元(如锥体神经元)的活动,从而在快速网络振荡中发挥作用。为此,快速放电、PV+中间神经元具有独特的动作电位动力学和离子电导特性,与高能量消耗有关。这在神经超微结构中通过富含线粒体和细胞色素 c 氧化酶得到反映,表明其对氧化磷酸化产生三磷酸腺苷(ATP)的依赖性。高能量消耗很可能是树突和广泛的轴突树突棘中膜离子转运以及神经递质γ-氨基丁酸(GABA)的突触前释放所必需的。快速放电、PV+中间神经元是γ 振荡(30-100Hz)出现的核心,为海马体和新皮层网络中感觉感知、运动行为和记忆形成过程中的复杂信息处理提供了基本机制。相反,葡萄糖和氧气供应不足(代谢应激)和/或活性氧和氮物种的过度形成(氧化应激)可能使这些中间神经元成为脆弱的靶标。快速放电、PV+中间神经元功能障碍可能会降低快速网络振荡受损和高级脑功能受损的阈值。这种病理生理机制可能与大脑衰老以及各种急性和慢性脑部疾病(如中风、血管性认知障碍、癫痫、阿尔茨海默病和精神分裂症)高度相关。