Institute of Physiology and Pathophysiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany.
J Cereb Blood Flow Metab. 2014 Aug;34(8):1270-82. doi: 10.1038/jcbfm.2014.104. Epub 2014 Jun 4.
Gamma oscillations (∼30 to 100 Hz) provide a fundamental mechanism of information processing during sensory perception, motor behavior, and memory formation by coordination of neuronal activity in networks of the hippocampus and neocortex. We review the cellular mechanisms of gamma oscillations about the underlying neuroenergetics, i.e., high oxygen consumption rate and exquisite sensitivity to metabolic stress during hypoxia or poisoning of mitochondrial oxidative phosphorylation. Gamma oscillations emerge from the precise synaptic interactions of excitatory pyramidal cells and inhibitory GABAergic interneurons. In particular, specialized interneurons such as parvalbumin-positive basket cells generate action potentials at high frequency ('fast-spiking') and synchronize the activity of numerous pyramidal cells by rhythmic inhibition ('clockwork'). As prerequisites, fast-spiking interneurons have unique electrophysiological properties and particularly high energy utilization, which is reflected in the ultrastructure by enrichment with mitochondria and cytochrome c oxidase, most likely needed for extensive membrane ion transport and γ-aminobutyric acid metabolism. This supports the hypothesis that highly energized fast-spiking interneurons are a central element for cortical information processing and may be critical for cognitive decline when energy supply becomes limited ('interneuron energy hypothesis'). As a clinical perspective, we discuss the functional consequences of metabolic and oxidative stress in fast-spiking interneurons in aging, ischemia, Alzheimer's disease, and schizophrenia.
伽马振荡(∼30 到 100 赫兹)通过协调海马体和新皮层网络中的神经元活动,为感觉感知、运动行为和记忆形成提供了一种基本的信息处理机制。我们回顾了关于潜在神经能量学的伽马振荡的细胞机制,即在缺氧或线粒体氧化磷酸化中毒期间,高耗氧量和对代谢应激的高度敏感性。伽马振荡源自兴奋性锥体细胞和抑制性 GABA 能中间神经元的精确突触相互作用。特别是专门的中间神经元,如钙蛋白阳性篮状细胞,以高频(“快速放电”)产生动作电位,并通过节律性抑制(“发条”)同步许多锥体细胞的活动。作为前提条件,快速放电中间神经元具有独特的电生理特性和特别高的能量利用,这在超微结构中通过富含线粒体和细胞色素 c 氧化酶反映出来,这很可能是广泛的膜离子转运和γ-氨基丁酸代谢所必需的。这支持了高度激发的快速放电中间神经元是皮质信息处理的核心要素的假设,并且当能量供应变得有限时(“中间神经元能量假说”),可能对认知能力下降至关重要。作为临床观点,我们讨论了代谢和氧化应激在衰老、缺血、阿尔茨海默病和精神分裂症中对快速放电中间神经元的功能后果。