Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 151-742, Republic of Korea.
Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 500-757, Republic of Korea.
Biomaterials. 2015 Nov;69:158-64. doi: 10.1016/j.biomaterials.2015.08.006. Epub 2015 Aug 6.
Inspired by the hierarchically organized protein fibers in extracellular matrix (ECM) as well as the physiological importance of multiscale topography, we developed a simple but robust method for the design and manipulation of precisely controllable multiscale hierarchical structures using capillary force lithography in combination with an original wrinkling technique. In this study, based on our proposed fabrication technology, we approached a conceptual platform that can mimic the hierarchically multiscale topographical and orientation cues of the ECM for controlling cell structure and function. We patterned the polyurethane acrylate-based nanotopography with various orientations on the microgrooves, which could provide multiscale topography signals of ECM to control single and multicellular morphology and orientation with precision. Using our platforms, we found that the structures and orientations of fibroblast cells were greatly influenced by the nanotopography, rather than the microtopography. We also proposed a new approach that enables the generation of native ECM having nanofibers in specific three-dimensional (3D) configurations by culturing fibroblast cells on the multiscale substrata. We suggest that our methodology could be used as efficient strategies for the design and manipulation of various functional platforms, including well-defined 3D tissue structures for advanced regenerative medicine applications.
受细胞外基质(ECM)中分层组织的蛋白质纤维以及多尺度形貌的生理重要性的启发,我们开发了一种简单但强大的方法,使用毛细作用力光刻结合原创的褶皱技术来设计和操纵精确可控的多尺度分层结构。在这项研究中,基于我们提出的制造技术,我们提出了一个概念平台,该平台可以模拟 ECM 的分层多尺度形貌和方向线索,以控制细胞结构和功能。我们在微槽上以各种方向图案化基于聚氨酯丙烯酸酯的纳米形貌,这可以提供 ECM 的多尺度形貌信号,以精确控制单细胞和多细胞的形态和方向。使用我们的平台,我们发现成纤维细胞的结构和方向受到纳米形貌的极大影响,而不是微形貌。我们还提出了一种新方法,通过在多尺度基底上培养成纤维细胞,在特定的三维(3D)配置中生成具有纳米纤维的天然 ECM。我们建议,我们的方法可以用作设计和操纵各种功能平台的有效策略,包括用于先进再生医学应用的明确定义的 3D 组织结构。