Khanna Astha, Oropeza Beu P, Huang Ngan F
Graver Technologies, Newark, NJ 07105, USA.
Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA.
Bioengineering (Basel). 2022 Oct 14;9(10):555. doi: 10.3390/bioengineering9100555.
A major challenge in engineering scalable three-dimensional tissues is the generation of a functional and developed microvascular network for adequate perfusion of oxygen and growth factors. Current biological approaches to creating vascularized tissues include the use of vascular cells, soluble factors, and instructive biomaterials. Angiogenesis and the subsequent generation of a functional vascular bed within engineered tissues has gained attention and is actively being studied through combinations of physical and chemical signals, specifically through the presentation of topographical growth factor signals. The spatiotemporal control of angiogenic signals can generate vascular networks in large and dense engineered tissues. This review highlights the developments and studies in the spatiotemporal control of these biological approaches through the coordinated orchestration of angiogenic factors, differentiation of vascular cells, and microfabrication of complex vascular networks. Fabrication strategies to achieve spatiotemporal control of vascularization involves the incorporation or encapsulation of growth factors, topographical engineering approaches, and 3D bioprinting techniques. In this article, we highlight the vascularization of engineered tissues, with a focus on vascularized cardiac patches that are clinically scalable for myocardial repair. Finally, we discuss the present challenges for successful clinical translation of engineered tissues and biomaterials.
工程化可扩展三维组织面临的一个主要挑战是生成一个功能性且发育完善的微血管网络,以实现氧气和生长因子的充分灌注。当前创建血管化组织的生物学方法包括使用血管细胞、可溶性因子和具有指导作用的生物材料。血管生成以及随后在工程组织内形成功能性血管床已受到关注,并正在通过物理和化学信号的组合,特别是通过呈现地形生长因子信号来积极研究。血管生成信号的时空控制可以在大型致密工程组织中生成血管网络。本综述重点介绍了通过协调血管生成因子、血管细胞分化和复杂血管网络的微制造,在这些生物学方法的时空控制方面取得的进展和研究。实现血管化时空控制的制造策略包括生长因子的掺入或封装、地形工程方法和3D生物打印技术。在本文中,我们重点介绍工程组织的血管化,尤其关注临床上可扩展用于心肌修复的血管化心脏补片。最后,我们讨论了工程组织和生物材料成功临床转化目前面临的挑战。