Liu Wei, Savara Aditya, Ren Xinguo, Ludwig Wiebke, Dostert Karl-Heinz, Schauermann Swetlana, Tkatchenko Alexandre, Freund Hans-Joachim, Scheffler Matthias
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195, Berlin, Germany.
J Phys Chem Lett. 2012 Mar 1;3(5):582-6. doi: 10.1021/jz300117g. Epub 2012 Feb 14.
Adsorbate geometry and reaction dynamics play essential roles in catalytic processes at surfaces. Here we present a theoretical and experimental study for a model functional organic/metal interface: isophorone (C9H14O) adsorbed on the Pd(111) surface. Density functional theory calculations with the Perdew-Burke-Ernzerhoff (PBE) functional including van der Waals (vdW) interactions, in combination with infrared spectroscopy and temperature-programmed desorption (TPD) experiments, reveal the reaction pathway between the weakly chemisorbed reactant (C9H14O) and the strongly chemisorbed product (C9H10O), which occurs by the cleavage of four C-H bonds below 250 K. Analysis of the TPD spectrum is consistent with the relatively small magnitude of the activation barrier derived from PBE+vdW calculations, demonstrating the feasibility of low-temperature dehydrogenation.
吸附质几何结构和反应动力学在表面催化过程中起着至关重要的作用。在此,我们针对一个模型功能性有机/金属界面开展了一项理论与实验研究:异佛尔酮(C9H14O)吸附在Pd(111)表面。采用包含范德华(vdW)相互作用的Perdew-Burke-Ernzerhoff(PBE)泛函进行密度泛函理论计算,并结合红外光谱和程序升温脱附(TPD)实验,揭示了弱化学吸附反应物(C9H14O)与强化学吸附产物(C9H10O)之间的反应路径,该反应路径是通过在250 K以下断裂四个C-H键而发生的。对TPD谱的分析与源自PBE+vdW计算的相对较小的活化能垒幅度相一致,证明了低温脱氢的可行性。