Suppr超能文献

细胞周期蛋白依赖性激酶5激活鸟嘌呤核苷酸交换因子GIV/Girdin以协调迁移-增殖二分法。

Cyclin-dependent kinase 5 activates guanine nucleotide exchange factor GIV/Girdin to orchestrate migration-proliferation dichotomy.

作者信息

Bhandari Deepali, Lopez-Sanchez Inmaculada, To Andrew, Lo I-Chung, Aznar Nicolas, Leyme Anthony, Gupta Vijay, Niesman Ingrid, Maddox Adam L, Garcia-Marcos Mikel, Farquhar Marilyn G, Ghosh Pradipta

机构信息

Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093-0651; Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, CA 90840-9507;

Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651;

出版信息

Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):E4874-83. doi: 10.1073/pnas.1514157112. Epub 2015 Aug 18.

Abstract

Signals propagated by receptor tyrosine kinases (RTKs) can drive cell migration and proliferation, two cellular processes that do not occur simultaneously--a phenomenon called "migration-proliferation dichotomy." We previously showed that epidermal growth factor (EGF) signaling is skewed to favor migration over proliferation via noncanonical transactivation of Gαi proteins by the guanine exchange factor (GEF) GIV. However, what turns on GIV-GEF downstream of growth factor RTKs remained unknown. Here we reveal the molecular mechanism by which phosphorylation of GIV by cyclin-dependent kinase 5 (CDK5) triggers GIV's ability to bind and activate Gαi in response to growth factors and modulate downstream signals to establish a dichotomy between migration and proliferation. We show that CDK5 binds and phosphorylates GIV at Ser1674 near its GEF motif. When Ser1674 is phosphorylated, GIV activates Gαi and enhances promigratory Akt signals. Phosphorylated GIV also binds Gαs and enhances endosomal maturation, which shortens the transit time of EGFR through early endosomes, thereby limiting mitogenic MAPK signals. Consequently, this phosphoevent triggers cells to preferentially migrate during wound healing and transmigration of cancer cells. When Ser1674 cannot be phosphorylated, GIV cannot bind either Gαi or Gαs, Akt signaling is suppressed, mitogenic signals are enhanced due to delayed transit time of EGFR through early endosomes, and cells preferentially proliferate. These results illuminate how GIV-GEF is turned on upon receptor activation, adds GIV to the repertoire of CDK5 substrates, and defines a mechanism by which this unusual CDK orchestrates migration-proliferation dichotomy during cancer invasion, wound healing, and development.

摘要

受体酪氨酸激酶(RTK)所传导的信号可驱动细胞迁移和增殖,这两个细胞过程不会同时发生——这种现象被称为“迁移-增殖二分法”。我们之前表明,表皮生长因子(EGF)信号通过鸟嘌呤交换因子(GEF)GIV对Gαi蛋白的非经典反式激活而偏向于促进迁移而非增殖。然而,生长因子RTK下游激活GIV-GEF的因素仍不清楚。在此,我们揭示了细胞周期蛋白依赖性激酶5(CDK5)对GIV的磷酸化触发GIV结合并激活Gαi以响应生长因子并调节下游信号从而在迁移和增殖之间建立二分法的分子机制。我们表明,CDK5在其GEF基序附近的Ser1674位点结合并磷酸化GIV。当Ser1674被磷酸化时,GIV激活Gαi并增强促迁移的Akt信号。磷酸化的GIV还结合Gαs并增强内体成熟,这缩短了表皮生长因子受体(EGFR)通过早期内体的转运时间,从而限制有丝分裂原性丝裂原活化蛋白激酶(MAPK)信号。因此,这种磷酸化事件促使细胞在伤口愈合和癌细胞迁移过程中优先迁移。当Ser1674不能被磷酸化时,GIV既不能结合Gαi也不能结合Gαs,Akt信号被抑制,由于EGFR通过早期内体的转运时间延迟,有丝分裂信号增强,细胞优先增殖。这些结果阐明了受体激活时GIV-GEF是如何被开启的,将GIV添加到CDK5底物的列表中,并定义了这种不同寻常的CDK在癌症侵袭、伤口愈合和发育过程中协调迁移-增殖二分法的机制。

相似文献

1
Cyclin-dependent kinase 5 activates guanine nucleotide exchange factor GIV/Girdin to orchestrate migration-proliferation dichotomy.
Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):E4874-83. doi: 10.1073/pnas.1514157112. Epub 2015 Aug 18.
2
GIV/Girdin activates Gαi and inhibits Gαs via the same motif.
Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):E5721-30. doi: 10.1073/pnas.1609502113. Epub 2016 Sep 12.
3
Protein kinase C-theta (PKCθ) phosphorylates and inhibits the guanine exchange factor, GIV/Girdin.
Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5510-5. doi: 10.1073/pnas.1303392110. Epub 2013 Mar 18.
4
A G{alpha}i-GIV molecular complex binds epidermal growth factor receptor and determines whether cells migrate or proliferate.
Mol Biol Cell. 2010 Jul 1;21(13):2338-54. doi: 10.1091/mbc.e10-01-0028. Epub 2010 May 12.
5
Functional characterization of the guanine nucleotide exchange factor (GEF) motif of GIV protein reveals a threshold effect in signaling.
Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):1961-6. doi: 10.1073/pnas.1120538109. Epub 2012 Jan 25.
6
Structural basis for activation of trimeric Gi proteins by multiple growth factor receptors via GIV/Girdin.
Mol Biol Cell. 2014 Nov 5;25(22):3654-71. doi: 10.1091/mbc.E14-05-0978. Epub 2014 Sep 3.
7
Therapeutic effects of cell-permeant peptides that activate G proteins downstream of growth factors.
Proc Natl Acad Sci U S A. 2015 May 19;112(20):E2602-10. doi: 10.1073/pnas.1505543112. Epub 2015 Apr 29.
8
GIV/Girdin is a rheostat that fine-tunes growth factor signals during tumor progression.
Cell Adh Migr. 2011 May-Jun;5(3):237-48. doi: 10.4161/cam.5.3.15909. Epub 2011 May 1.
9
Focal adhesions are foci for tyrosine-based signal transduction via GIV/Girdin and G proteins.
Mol Biol Cell. 2015 Dec 1;26(24):4313-24. doi: 10.1091/mbc.E15-07-0496. Epub 2015 Oct 7.

引用本文的文献

2
Long-Chain Cyclic Arylguanidines as Multifunctional Serotonin Receptor Ligands with Antiproliferative Activity.
ACS Omega. 2025 Feb 11;10(7):6446-6469. doi: 10.1021/acsomega.4c06456. eCollection 2025 Feb 25.
3
CDK5: Insights into its roles in diseases.
Mol Biol Rep. 2025 Jan 21;52(1):145. doi: 10.1007/s11033-025-10253-4.
4
Heterotrimeric G protein signaling without GPCRs: The Gα-binding-and-activating (GBA) motif.
J Biol Chem. 2024 Mar;300(3):105756. doi: 10.1016/j.jbc.2024.105756. Epub 2024 Feb 15.
5
Predictive data-driven modeling of C-terminal tyrosine function in the EGFR signaling network.
Life Sci Alliance. 2023 May 11;6(8). doi: 10.26508/lsa.202201466. Print 2023 Aug.
6
A circuit for secretion-coupled cellular autonomy in multicellular eukaryotic cells.
Mol Syst Biol. 2023 Apr 12;19(4):e11127. doi: 10.15252/msb.202211127. Epub 2023 Mar 1.
7
Post-translational modifications of CDK5 and their biological roles in cancer.
Mol Biomed. 2021 Jul 20;2(1):22. doi: 10.1186/s43556-021-00029-0.
9
Cyclin-Dependent Kinases (CDK) and Their Role in Diseases Development-Review.
Int J Mol Sci. 2021 Mar 13;22(6):2935. doi: 10.3390/ijms22062935.

本文引用的文献

1
Activation of Gαi at the Golgi by GIV/Girdin imposes finiteness in Arf1 signaling.
Dev Cell. 2015 Apr 20;33(2):189-203. doi: 10.1016/j.devcel.2015.02.009. Epub 2015 Apr 9.
2
Multimodular biosensors reveal a novel platform for activation of G proteins by growth factor receptors.
Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):E937-46. doi: 10.1073/pnas.1420140112. Epub 2015 Feb 17.
3
GIV/Girdin transmits signals from multiple receptors by triggering trimeric G protein activation.
J Biol Chem. 2015 Mar 13;290(11):6697-704. doi: 10.1074/jbc.R114.613414. Epub 2015 Jan 20.
4
Structural basis for activation of trimeric Gi proteins by multiple growth factor receptors via GIV/Girdin.
Mol Biol Cell. 2014 Nov 5;25(22):3654-71. doi: 10.1091/mbc.E14-05-0978. Epub 2014 Sep 3.
6
Protein kinase C-theta (PKCθ) phosphorylates and inhibits the guanine exchange factor, GIV/Girdin.
Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5510-5. doi: 10.1073/pnas.1303392110. Epub 2013 Mar 18.
7
Gαs promotes EEA1 endosome maturation and shuts down proliferative signaling through interaction with GIV (Girdin).
Mol Biol Cell. 2012 Dec;23(23):4623-34. doi: 10.1091/mbc.E12-02-0133. Epub 2012 Oct 10.
8
9
Involvement of Girdin in the determination of cell polarity during cell migration.
PLoS One. 2012;7(5):e36681. doi: 10.1371/journal.pone.0036681. Epub 2012 May 4.
10
Functional characterization of the guanine nucleotide exchange factor (GEF) motif of GIV protein reveals a threshold effect in signaling.
Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):1961-6. doi: 10.1073/pnas.1120538109. Epub 2012 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验