Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States.
Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Nano Lett. 2015 Sep 9;15(9):5755-63. doi: 10.1021/acs.nanolett.5b01709. Epub 2015 Aug 25.
The development of sodium ion batteries (NIBs) can provide an alternative to lithium ion batteries (LIBs) for sustainable, low-cost energy storage. However, due to the larger size and higher m/e ratio of the sodium ion compared to lithium, sodiation reactions of candidate electrodes are expected to differ in significant ways from the corresponding lithium ones. In this work, we investigated the sodiation mechanism of a typical transition metal-oxide, NiO, through a set of correlated techniques, including electrochemical and synchrotron studies, real-time electron microscopy observation, and ab initio molecular dynamics (MD) simulations. We found that a crystalline Na2O reaction layer that was formed at the beginning of sodiation plays an important role in blocking the further transport of sodium ions. In addition, sodiation in NiO exhibits a "shrinking-core" mode that results from a layer-by-layer reaction, as identified by ab initio MD simulations. For lithiation, however, the formation of Li antisite defects significantly distorts the local NiO lattice that facilitates Li insertion, thus enhancing the overall reaction rate. These observations delineate the mechanistic difference between sodiation and lithiation in metal-oxide conversion materials. More importantly, our findings identify the importance of understanding the role of reaction layers on the functioning of electrodes and thus provide critical insights into further optimizing NIB materials through surface engineering.
钠离子电池(NIBs)的发展为可持续、低成本的储能提供了一种替代锂离子电池(LIBs)的选择。然而,由于钠离子的尺寸和荷质比比锂离子大,预计候选电极的嵌入反应在很大程度上与相应的锂离子不同。在这项工作中,我们通过一系列相关技术,包括电化学和同步辐射研究、实时电子显微镜观察和第一性原理分子动力学(MD)模拟,研究了典型过渡金属氧化物 NiO 的嵌入机制。我们发现,在嵌入初期形成的结晶 Na2O 反应层在阻止钠离子进一步传输方面起着重要作用。此外,嵌入 NiO 表现出一种“核收缩”模式,这是由逐层反应引起的,这一点通过第一性原理 MD 模拟得到了证实。然而,对于锂离子嵌入,Li 反位缺陷的形成会显著扭曲局部 NiO 晶格,从而促进 Li 的嵌入,从而提高整体反应速率。这些观察结果描绘了金属氧化物转化材料中嵌入和嵌入反应的机制差异。更重要的是,我们的发现确定了理解反应层在电极功能中的作用的重要性,从而为通过表面工程进一步优化 NIB 材料提供了关键的见解。