School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
Nat Commun. 2016 Jun 30;7:12122. doi: 10.1038/ncomms12122.
Sodium-ion batteries are a potentially low-cost and safe alternative to the prevailing lithium-ion battery technology. However, it is a great challenge to achieve fast charging and high power density for most sodium-ion electrodes because of the sluggish sodiation kinetics. Here we demonstrate a high-capacity and high-rate sodium-ion anode based on ultrathin layered tin(II) sulfide nanostructures, in which a maximized extrinsic pseudocapacitance contribution is identified and verified by kinetics analysis. The graphene foam supported tin(II) sulfide nanoarray anode delivers a high reversible capacity of ∼1,100 mAh g(-1) at 30 mA g(-1) and ∼420 mAh g(-1) at 30 A g(-1), which even outperforms its lithium-ion storage performance. The surface-dominated redox reaction rendered by our tailored ultrathin tin(II) sulfide nanostructures may also work in other layered materials for high-performance sodium-ion storage.
钠离子电池是一种有潜力的低成本和安全的替代目前主流的锂离子电池技术。然而,由于钠化动力学缓慢,大多数钠离子电极要实现快速充电和高功率密度仍然是一个巨大的挑战。在这里,我们展示了一种基于超薄层状二硫化锡纳米结构的高容量、高倍率钠离子阳极,通过动力学分析确定并验证了其最大的外在赝电容贡献。在 30mA g-1时,石墨烯泡沫负载的二硫化锡纳米阵列阳极具有高达约 1100 mAh g-1的可逆容量,在 30A g-1时,其容量仍可达约 420 mAh g-1,甚至超过了其锂离子存储性能。我们设计的超薄二硫化锡纳米结构所实现的表面控制的氧化还原反应也可能适用于其他层状材料,以实现高性能的钠离子存储。