Tamura Koji
Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
J Mol Evol. 2015 Oct;81(3-4):69-71. doi: 10.1007/s00239-015-9694-8. Epub 2015 Aug 20.
tRNA with a terminal UCCA-3' forms a structure in which the 3'-sequence folds back. The adenine of glycyl-AMP can base-pair with the uridine of the UCCA-3' region, which places the glycine residue in close proximity to the 3'-terminal adenosine of tRNA, possibly enabling the transfer of glycine from glycyl-AMP to tRNA. Thus, the UCCA-3'-containing tRNA (as seen in eubacterial tRNA(Gly)s) would possess an intrinsic property of glycylation by glycyl-AMP. This model provides a new perspective on the origins of the glycine assignment in the genetic code, beyond the "frozen accident" hypothesis.
带有末端UCCA - 3'的转运RNA形成一种结构,其中3'序列会折回。甘氨酰 - AMP的腺嘌呤可与UCCA - 3'区域的尿苷进行碱基配对,这使得甘氨酸残基紧邻转运RNA的3'末端腺苷,可能促使甘氨酸从甘氨酰 - AMP转移至转运RNA。因此,含有UCCA - 3'的转运RNA(如在真细菌的tRNA(Gly)s中所见)将具有被甘氨酰 - AMP糖基化的内在特性。该模型为遗传密码中甘氨酸分配的起源提供了新的视角,超越了“冻结偶然”假说。