Jugnet Yvette, Loffreda David, Dupont Céline, Delbecq Françoise, Ehret Eric, Cadete Santos Aires Francisco J, Mun Bongjin S, Aksoy Akgul Funda, Liu Zhi
†Institut de Recherche sur la Catalyse et l'Environnement de Lyon, UMR 5256 CNRS-Université Lyon 1, 69626 Villeurbanne Cedex, France.
‡Ecole Normale Supérieure de Lyon, Laboratoire de Chimie, UMR 5182 CNRS-Université de Lyon, 69364 Lyon Cedex 07, France.
J Phys Chem Lett. 2012 Dec 20;3(24):3707-14. doi: 10.1021/jz301802g. Epub 2012 Dec 3.
The knowledge of the catalyst active phase on the atomic scale under realistic working conditions is the key for designing new and more efficient materials. In this context, the investigation of CO oxidation on the bimetallic Pt3Sn(111) surfaces by near-ambient-pressure X-ray photoelectron spectroscopy and density functional theory calculations illustrates how combining advanced methodologies allows the determination of the nature of the active phase. Starting from 300 K and 500 mTorr of oxygen, the progressive formation of surface oxides is observed with increasing temperature: SnO, PtO units first, and SnO2, PtO2 units afterward. For CO oxidation on the (2 × 2) surface, the activity gain is assigned to the build-up of ultrathin domains composed of SnO and SnO2 units. The formation of these early stage surface oxides is entirely supported by a density functional theory analysis. More generally, this study demonstrates how the catalyst surface oxidation and transformation can be better controlled by a relevant choice of environmental conditions.
在实际工作条件下,从原子尺度了解催化剂活性相是设计新型高效材料的关键。在此背景下,通过近常压X射线光电子能谱和密度泛函理论计算对双金属Pt3Sn(111)表面上的CO氧化进行研究,阐明了结合先进方法如何能够确定活性相的性质。从300 K和500 mTorr的氧气开始,随着温度升高观察到表面氧化物的逐步形成:首先是SnO、PtO单元,随后是SnO2、PtO2单元。对于(2×2)表面上的CO氧化,活性增加归因于由SnO和SnO2单元组成的超薄域的形成。这些早期表面氧化物的形成完全得到密度泛函理论分析的支持。更普遍地说,这项研究表明如何通过合理选择环境条件更好地控制催化剂表面的氧化和转变。