Suppr超能文献

胆碱能调制皮层模型中波的形成与动力学

Formation and Dynamics of Waves in a Cortical Model of Cholinergic Modulation.

作者信息

Roach James P, Ben-Jacob Eshel, Sander Leonard M, Zochowski Michal R

机构信息

Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America.

School of Physics and Astronomy, Tel-Aviv University, Tel Aviv, Israel; Center for Theoretical Biological Physics, and Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America.

出版信息

PLoS Comput Biol. 2015 Aug 21;11(8):e1004449. doi: 10.1371/journal.pcbi.1004449. eCollection 2015 Aug.

Abstract

Acetylcholine (ACh) is a regulator of neural excitability and one of the neurochemical substrates of sleep. Amongst the cellular effects induced by cholinergic modulation are a reduction in spike-frequency adaptation (SFA) and a shift in the phase response curve (PRC). We demonstrate in a biophysical model how changes in neural excitability and network structure interact to create three distinct functional regimes: localized asynchronous, traveling asynchronous, and traveling synchronous. Our results qualitatively match those observed experimentally. Cortical activity during slow wave sleep (SWS) differs from that during REM sleep or waking states. During SWS there are traveling patterns of activity in the cortex; in other states stationary patterns occur. Our model is a network composed of Hodgkin-Huxley type neurons with a M-current regulated by ACh. Regulation of ACh level can account for dynamical changes between functional regimes. Reduction of the magnitude of this current recreates the reduction in SFA the shift from a type 2 to a type 1 PRC observed in the presence of ACh. When SFA is minimal (in waking or REM sleep state, high ACh) patterns of activity are localized and easily pinned by network inhomogeneities. When SFA is present (decreasing ACh), traveling waves of activity naturally arise. A further decrease in ACh leads to a high degree of synchrony within traveling waves. We also show that the level of ACh determines how sensitive network activity is to synaptic heterogeneity. These regimes may have a profound functional significance as stationary patterns may play a role in the proper encoding of external input as memory and traveling waves could lead to synaptic regularization, giving unique insights into the role and significance of ACh in determining patterns of cortical activity and functional differences arising from the patterns.

摘要

乙酰胆碱(ACh)是神经兴奋性的调节剂,也是睡眠的神经化学底物之一。胆碱能调制所诱导的细胞效应包括尖峰频率适应性(SFA)的降低和相位响应曲线(PRC)的偏移。我们在一个生物物理模型中展示了神经兴奋性和网络结构的变化如何相互作用,从而产生三种不同的功能状态:局部异步、行波异步和行波同步。我们的结果在定性上与实验观察结果相符。慢波睡眠(SWS)期间的皮层活动与快速眼动睡眠或清醒状态期间的不同。在慢波睡眠期间,皮层中存在活动的行波模式;在其他状态下则出现静止模式。我们的模型是一个由霍奇金 - 赫胥黎型神经元组成且M电流受乙酰胆碱调节的网络。乙酰胆碱水平的调节可以解释功能状态之间的动态变化。该电流幅度的降低重现了在乙酰胆碱存在时观察到的SFA降低以及从2型PRC到1型PRC的转变。当SFA最小时(在清醒或快速眼动睡眠状态,高乙酰胆碱),活动模式是局部化的,并且容易被网络不均匀性固定。当存在SFA时(乙酰胆碱减少),活动的行波自然出现。乙酰胆碱的进一步减少会导致行波内的高度同步。我们还表明,乙酰胆碱的水平决定了网络活动对突触异质性的敏感程度。这些状态可能具有深远的功能意义,因为静止模式可能在将外部输入正确编码为记忆方面发挥作用,而行波可能导致突触正则化,这为乙酰胆碱在确定皮层活动模式以及由这些模式产生的功能差异方面的作用和意义提供了独特的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3243/4546669/dd3c13ba8223/pcbi.1004449.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验