Suppr超能文献

用于脑动力学大规模模拟的计算效率降低的新型神经元模型。

New class of reduced computationally efficient neuronal models for large-scale simulations of brain dynamics.

作者信息

Komarov Maxim, Krishnan Giri, Chauvette Sylvain, Rulkov Nikolai, Timofeev Igor, Bazhenov Maxim

机构信息

Department of Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.

Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), Local F-6500, 2601 de la Canardière, QC, Québec, G1J2G3, Canada.

出版信息

J Comput Neurosci. 2018 Feb;44(1):1-24. doi: 10.1007/s10827-017-0663-7. Epub 2017 Dec 12.

Abstract

During slow-wave sleep, brain electrical activity is dominated by the slow (< 1 Hz) electroencephalogram (EEG) oscillations characterized by the periodic transitions between active (or Up) and silent (or Down) states in the membrane voltage of the cortical and thalamic neurons. Sleep slow oscillation is believed to play critical role in consolidation of recent memories. Past computational studies, based on the Hodgkin-Huxley type neuronal models, revealed possible intracellular and network mechanisms of the neuronal activity during sleep, however, they failed to explore the large-scale cortical network dynamics depending on collective behavior in the large populations of neurons. In this new study, we developed a novel class of reduced discrete time spiking neuron models for large-scale network simulations of wake and sleep dynamics. In addition to the spiking mechanism, the new model implemented nonlinearities capturing effects of the leak current, the Ca dependent K current and the persistent Na current that were found to be critical for transitions between Up and Down states of the slow oscillation. We applied the new model to study large-scale two-dimensional cortical network activity during slow-wave sleep. Our study explained traveling wave dynamics and characteristic synchronization properties of transitions between Up and Down states of the slow oscillation as observed in vivo in recordings from cats. We further predict a critical role of synaptic noise and slow adaptive currents for spike sequence replay as found during sleep related memory consolidation.

摘要

在慢波睡眠期间,大脑电活动由缓慢(<1赫兹)的脑电图(EEG)振荡主导,其特征是皮质和丘脑神经元膜电压在活跃(或向上)和沉默(或向下)状态之间的周期性转换。睡眠慢振荡被认为在近期记忆巩固中起关键作用。过去基于霍奇金-赫胥黎型神经元模型的计算研究揭示了睡眠期间神经元活动可能的细胞内和网络机制,然而,它们未能探索依赖于大量神经元集体行为的大规模皮质网络动力学。在这项新研究中,我们开发了一类新型的简化离散时间脉冲神经元模型,用于清醒和睡眠动力学的大规模网络模拟。除了脉冲发放机制外,新模型还实现了捕捉漏电流、钙依赖性钾电流和持续性钠电流效应的非线性,这些电流被发现对慢振荡的向上和向下状态之间的转换至关重要。我们应用新模型研究慢波睡眠期间的大规模二维皮质网络活动。我们的研究解释了在猫的体内记录中观察到的慢振荡向上和向下状态之间转换的行波动力学和特征同步特性。我们进一步预测了突触噪声和缓慢适应性电流在睡眠相关记忆巩固期间发现的尖峰序列回放中的关键作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验