Suppr超能文献

切萨皮克湾缺氧区域中依赖光的硫化物氧化现象可以用光养细菌的少量种群来解释。

Light-dependent sulfide oxidation in the anoxic zone of the Chesapeake Bay can be explained by small populations of phototrophic bacteria.

作者信息

Findlay Alyssa J, Bennett Alexa J, Hanson Thomas E, Luther George W

机构信息

School of Marine Science and Policy, College of Earth Ocean and Environment, University of Delaware, Lewes, Delaware, USA

School of Marine Science and Policy, College of Earth Ocean and Environment, University of Delaware, Lewes, Delaware, USA.

出版信息

Appl Environ Microbiol. 2015 Nov;81(21):7560-9. doi: 10.1128/AEM.02062-15. Epub 2015 Aug 21.

Abstract

Microbial sulfide oxidation in aquatic environments is an important ecosystem process, as sulfide is potently toxic to aerobic organisms. Sulfide oxidation in anoxic waters can prevent the efflux of sulfide to aerobic water masses, thus mitigating toxicity. The contribution of phototrophic sulfide-oxidizing bacteria to anaerobic sulfide oxidation in the Chesapeake Bay and the redox chemistry of the stratified water column were investigated in the summers of 2011 to 2014. In 2011 and 2013, phototrophic sulfide-oxidizing bacteria closely related to Prosthecochloris species of the phylum Chlorobi were cultivated from waters sampled at and below the oxic-anoxic interface, where measured light penetration was sufficient to support populations of low-light-adapted photosynthetic bacteria. In 2012, 2013, and 2014, light-dependent sulfide loss was observed in freshly collected water column samples. In these samples, extremely low light levels caused 2- to 10-fold increases in the sulfide uptake rate over the sulfide uptake rate under dark conditions. An enrichment, CB11, dominated by Prosthecochloris species, oxidized sulfide with a Ks value of 11 μM and a Vmax value of 51 μM min(-1) (mg protein(-1)). Using these kinetic values with in situ sulfide concentrations and light fluxes, we calculated that a small population of Chlorobi similar to those in enrichment CB11 can account for the observed anaerobic light-dependent sulfide consumption activity in natural water samples. We conclude that Chlorobi play a far larger role in the Chesapeake Bay than currently appreciated. This result has potential implications for coastal anoxic waters and expanding oxygen-minimum zones as they begin to impinge on the photic zone.

摘要

水生环境中的微生物硫化物氧化是一个重要的生态系统过程,因为硫化物对需氧生物具有强烈毒性。缺氧水域中的硫化物氧化可以防止硫化物流入有氧水体,从而减轻毒性。2011年至2014年夏季,研究了切萨皮克湾中光养硫化物氧化细菌对厌氧硫化物氧化的贡献以及分层水柱的氧化还原化学。2011年和2013年,从有氧-缺氧界面及其以下采集的水样中培养出了与绿菌门的原绿球藻属密切相关的光养硫化物氧化细菌,在这些地方测得的光穿透足以支持适应弱光的光合细菌种群。2012年、2013年和2014年,在新采集的水柱样本中观察到了光依赖型硫化物损失。在这些样本中,极低的光照水平导致硫化物吸收速率比黑暗条件下的吸收速率增加了2至10倍。以原绿球藻属为主的富集培养物CB11氧化硫化物的Ks值为11μM,Vmax值为51μM min⁻¹(mg蛋白⁻¹)。利用这些动力学值以及原位硫化物浓度和光通量,我们计算出一小群类似于富集培养物CB11中的绿菌可以解释在天然水样中观察到的厌氧光依赖型硫化物消耗活性。我们得出结论,绿菌在切萨皮克湾中所起的作用远比目前所认识到的要大得多。这一结果对于沿海缺氧水域以及随着它们开始影响光合带而不断扩大的低氧区具有潜在意义。

相似文献

1
Light-dependent sulfide oxidation in the anoxic zone of the Chesapeake Bay can be explained by small populations of phototrophic bacteria.
Appl Environ Microbiol. 2015 Nov;81(21):7560-9. doi: 10.1128/AEM.02062-15. Epub 2015 Aug 21.
2
Community shift from phototrophic to chemotrophic sulfide oxidation following anoxic holomixis in a stratified seawater lake.
Appl Environ Microbiol. 2015 Jan;81(1):298-308. doi: 10.1128/AEM.02435-14. Epub 2014 Oct 24.
3
Dark aerobic sulfide oxidation by anoxygenic phototrophs in anoxic waters.
Environ Microbiol. 2019 May;21(5):1611-1626. doi: 10.1111/1462-2920.14543. Epub 2019 Mar 4.
4
Large-scale distribution and activity patterns of an extremely low-light-adapted population of green sulfur bacteria in the Black Sea.
Environ Microbiol. 2010 May;12(5):1348-62. doi: 10.1111/j.1462-2920.2010.02178.x. Epub 2010 Mar 9.
5
Sulfur-metabolizing bacterial populations in microbial mats of the Nakabusa hot spring, Japan.
Syst Appl Microbiol. 2011 Jun;34(4):293-302. doi: 10.1016/j.syapm.2010.12.002. Epub 2011 Feb 24.
9
sp. nov., a Chemolithoheterotroph Isolated from Sulfide- and Organic-Rich Coastal Waters off Peru.
Appl Environ Microbiol. 2019 Nov 27;85(24). doi: 10.1128/AEM.01344-19. Print 2019 Dec 15.
10
Beyond the genome: functional studies of phototrophic sulfur oxidation.
Adv Exp Med Biol. 2010;675:109-21. doi: 10.1007/978-1-4419-1528-3_7.

引用本文的文献

2
The contrasting roles of nitric oxide drive microbial community organization as a function of oxygen presence.
Curr Biol. 2022 Dec 19;32(24):5221-5234.e4. doi: 10.1016/j.cub.2022.10.008. Epub 2022 Oct 27.
3
Abundant and persistent sulfur-oxidizing microbial populations are responsive to hypoxia in the Chesapeake Bay.
Environ Microbiol. 2022 May;24(5):2315-2332. doi: 10.1111/1462-2920.15976. Epub 2022 Mar 19.
4
Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom.
Environ Microbiome. 2020 Jan 17;15(1):3. doi: 10.1186/s40793-019-0348-0.
5
6
The bacterial sulfur cycle in expanding dysoxic and euxinic marine waters.
Environ Microbiol. 2021 Jun;23(6):2834-2857. doi: 10.1111/1462-2920.15265. Epub 2020 Oct 18.
8
A New Niche for Anoxygenic Phototrophs as Endoliths.
Appl Environ Microbiol. 2018 Jan 31;84(4). doi: 10.1128/AEM.02055-17. Print 2018 Feb 15.

本文引用的文献

1
Why can hydrogen sulfide permeate cell membranes?
J Am Chem Soc. 2014 Oct 29;136(43):15111-3. doi: 10.1021/ja508063s. Epub 2014 Oct 21.
3
Phototrophic sulfide oxidation: environmental insights and a method for kinetic analysis.
Front Microbiol. 2013 Dec 19;4:382. doi: 10.3389/fmicb.2013.00382.
4
MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.
Mol Biol Evol. 2013 Dec;30(12):2725-9. doi: 10.1093/molbev/mst197. Epub 2013 Oct 16.
5
Giant hydrogen sulfide plume in the oxygen minimum zone off Peru supports chemolithoautotrophy.
PLoS One. 2013 Aug 21;8(8):e68661. doi: 10.1371/journal.pone.0068661. eCollection 2013.
6
Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria.
Front Microbiol. 2011 May 24;2:116. doi: 10.3389/fmicb.2011.00116. eCollection 2011.
8
Climate-forced variability of ocean hypoxia.
Science. 2011 Jul 15;333(6040):336-9. doi: 10.1126/science.1202422. Epub 2011 Jun 9.
9
A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast.
Science. 2010 Dec 3;330(6009):1375-8. doi: 10.1126/science.1196889. Epub 2010 Nov 11.
10
Large-scale distribution and activity patterns of an extremely low-light-adapted population of green sulfur bacteria in the Black Sea.
Environ Microbiol. 2010 May;12(5):1348-62. doi: 10.1111/j.1462-2920.2010.02178.x. Epub 2010 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验