Findlay Alyssa J, Bennett Alexa J, Hanson Thomas E, Luther George W
School of Marine Science and Policy, College of Earth Ocean and Environment, University of Delaware, Lewes, Delaware, USA
School of Marine Science and Policy, College of Earth Ocean and Environment, University of Delaware, Lewes, Delaware, USA.
Appl Environ Microbiol. 2015 Nov;81(21):7560-9. doi: 10.1128/AEM.02062-15. Epub 2015 Aug 21.
Microbial sulfide oxidation in aquatic environments is an important ecosystem process, as sulfide is potently toxic to aerobic organisms. Sulfide oxidation in anoxic waters can prevent the efflux of sulfide to aerobic water masses, thus mitigating toxicity. The contribution of phototrophic sulfide-oxidizing bacteria to anaerobic sulfide oxidation in the Chesapeake Bay and the redox chemistry of the stratified water column were investigated in the summers of 2011 to 2014. In 2011 and 2013, phototrophic sulfide-oxidizing bacteria closely related to Prosthecochloris species of the phylum Chlorobi were cultivated from waters sampled at and below the oxic-anoxic interface, where measured light penetration was sufficient to support populations of low-light-adapted photosynthetic bacteria. In 2012, 2013, and 2014, light-dependent sulfide loss was observed in freshly collected water column samples. In these samples, extremely low light levels caused 2- to 10-fold increases in the sulfide uptake rate over the sulfide uptake rate under dark conditions. An enrichment, CB11, dominated by Prosthecochloris species, oxidized sulfide with a Ks value of 11 μM and a Vmax value of 51 μM min(-1) (mg protein(-1)). Using these kinetic values with in situ sulfide concentrations and light fluxes, we calculated that a small population of Chlorobi similar to those in enrichment CB11 can account for the observed anaerobic light-dependent sulfide consumption activity in natural water samples. We conclude that Chlorobi play a far larger role in the Chesapeake Bay than currently appreciated. This result has potential implications for coastal anoxic waters and expanding oxygen-minimum zones as they begin to impinge on the photic zone.
水生环境中的微生物硫化物氧化是一个重要的生态系统过程,因为硫化物对需氧生物具有强烈毒性。缺氧水域中的硫化物氧化可以防止硫化物流入有氧水体,从而减轻毒性。2011年至2014年夏季,研究了切萨皮克湾中光养硫化物氧化细菌对厌氧硫化物氧化的贡献以及分层水柱的氧化还原化学。2011年和2013年,从有氧-缺氧界面及其以下采集的水样中培养出了与绿菌门的原绿球藻属密切相关的光养硫化物氧化细菌,在这些地方测得的光穿透足以支持适应弱光的光合细菌种群。2012年、2013年和2014年,在新采集的水柱样本中观察到了光依赖型硫化物损失。在这些样本中,极低的光照水平导致硫化物吸收速率比黑暗条件下的吸收速率增加了2至10倍。以原绿球藻属为主的富集培养物CB11氧化硫化物的Ks值为11μM,Vmax值为51μM min⁻¹(mg蛋白⁻¹)。利用这些动力学值以及原位硫化物浓度和光通量,我们计算出一小群类似于富集培养物CB11中的绿菌可以解释在天然水样中观察到的厌氧光依赖型硫化物消耗活性。我们得出结论,绿菌在切萨皮克湾中所起的作用远比目前所认识到的要大得多。这一结果对于沿海缺氧水域以及随着它们开始影响光合带而不断扩大的低氧区具有潜在意义。