Suppr超能文献

切萨皮克湾中有丰富且持久的硫氧化微生物种群,对缺氧环境有响应。

Abundant and persistent sulfur-oxidizing microbial populations are responsive to hypoxia in the Chesapeake Bay.

机构信息

Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.

Department of Earth and Planetary Sciences, 3400 N. Charles Street, Baltimore, MD 21218, USA.

出版信息

Environ Microbiol. 2022 May;24(5):2315-2332. doi: 10.1111/1462-2920.15976. Epub 2022 Mar 19.

Abstract

The number, size and severity of aquatic low-oxygen dead zones are increasing worldwide. Microbial processes in low-oxygen environments have important ecosystem-level consequences, such as denitrification, greenhouse gas production and acidification. To identify key microbial processes occurring in low-oxygen bottom waters of the Chesapeake Bay, we sequenced both 16S rRNA genes and shotgun metagenomic libraries to determine the identity, functional potential and spatiotemporal distribution of microbial populations in the water column. Unsupervised clustering algorithms grouped samples into three clusters using water chemistry or microbial communities, with extensive overlap of cluster composition between methods. Clusters were strongly differentiated by temperature, salinity and oxygen. Sulfur-oxidizing microorganisms were found to be enriched in the low-oxygen bottom water and predictive of hypoxic conditions. Metagenome-assembled genomes demonstrate that some of these sulfur-oxidizing populations are capable of partial denitrification and transcriptionally active in a prior study. These results suggest that microorganisms capable of oxidizing reduced sulfur compounds are a previously unidentified microbial indicator of low oxygen in the Chesapeake Bay and reveal ties between the sulfur, nitrogen and oxygen cycles that could be important to capture when predicting the ecosystem response to remediation efforts or climate change.

摘要

全球范围内,水生低氧死区的数量、规模和严重程度都在增加。低氧环境中的微生物过程对生态系统层面具有重要影响,如反硝化作用、温室气体产生和酸化。为了确定切萨皮克湾低氧底层水中发生的关键微生物过程,我们对 16S rRNA 基因和鸟枪法宏基因组文库进行了测序,以确定水柱中微生物种群的身份、功能潜力和时空分布。无监督聚类算法使用水化学或微生物群落将样品分为三个聚类,两种方法之间的聚类组成有很大的重叠。聚类受温度、盐度和氧气的强烈影响。发现硫氧化微生物在低氧底层水中富集,并可预测缺氧条件。宏基因组组装基因组表明,其中一些硫氧化种群能够进行部分反硝化作用,并在前一项研究中具有转录活性。这些结果表明,能够氧化还原态硫化合物的微生物是切萨皮克湾低氧的一个以前未被识别的微生物指标,并揭示了硫、氮和氧循环之间的联系,这些联系在预测生态系统对修复工作或气候变化的反应时可能很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16f1/9310604/81b3947a7ebb/EMI-24-2315-g006.jpg

相似文献

1
Abundant and persistent sulfur-oxidizing microbial populations are responsive to hypoxia in the Chesapeake Bay.
Environ Microbiol. 2022 May;24(5):2315-2332. doi: 10.1111/1462-2920.15976. Epub 2022 Mar 19.
2
Dynamics of microbial populations mediating biogeochemical cycling in a freshwater lake.
Microbiome. 2018 Sep 18;6(1):165. doi: 10.1186/s40168-018-0556-7.
4
Microbial Activities and Selection from Surface Ocean to Subseafloor on the Namibian Continental Shelf.
Appl Environ Microbiol. 2022 May 10;88(9):e0021622. doi: 10.1128/aem.00216-22. Epub 2022 Apr 11.
5
Anaerobic ammonium oxidation (anammox) in Chesapeake Bay sediments.
Microb Ecol. 2008 Feb;55(2):311-20. doi: 10.1007/s00248-007-9277-3. Epub 2007 Jul 7.
7
Microbial community structure in deep natural gas-bearing aquifers subjected to sulfate-containing fluid injection.
J Biosci Bioeng. 2019 Jan;127(1):45-51. doi: 10.1016/j.jbiosc.2018.06.013. Epub 2018 Aug 3.
8
Microbial communities related to the sulfur cycle in the Sansha Yongle Blue Hole.
Microbiol Spectr. 2023 Aug 25;11(5):e0114923. doi: 10.1128/spectrum.01149-23.
9
Light-dependent sulfide oxidation in the anoxic zone of the Chesapeake Bay can be explained by small populations of phototrophic bacteria.
Appl Environ Microbiol. 2015 Nov;81(21):7560-9. doi: 10.1128/AEM.02062-15. Epub 2015 Aug 21.

引用本文的文献

3
Genome-resolved adaptation strategies of to changing conditions in the Chesapeake and Delaware Bays.
Appl Environ Microbiol. 2025 Feb 19;91(2):e0235724. doi: 10.1128/aem.02357-24. Epub 2025 Jan 8.
4
Higher-order interactions and emergent properties of microbial communities: The power of synthetic ecology.
Heliyon. 2024 Jul 9;10(14):e33896. doi: 10.1016/j.heliyon.2024.e33896. eCollection 2024 Jul 30.
5
Indexing and searching petabase-scale nucleotide resources.
Nat Methods. 2024 Jun;21(6):994-1002. doi: 10.1038/s41592-024-02280-z. Epub 2024 May 16.
7
Diversity at single nucleotide to pangenome scales among sulfur cycling bacteria in salt marshes.
Appl Environ Microbiol. 2023 Nov 29;89(11):e0098823. doi: 10.1128/aem.00988-23. Epub 2023 Oct 26.

本文引用的文献

1
Microbial ecology of sulfur cycling near the sulfate-methane transition of deep-sea cold seep sediments.
Environ Microbiol. 2021 Nov;23(11):6844-6858. doi: 10.1111/1462-2920.15796. Epub 2021 Oct 13.
2
Transcriptomic evidences for microbial carbon and nitrogen cycles in the deoxygenated seawaters of Bohai Sea.
Environ Int. 2022 Jan;158:106889. doi: 10.1016/j.envint.2021.106889. Epub 2021 Oct 4.
4
KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold.
Bioinformatics. 2020 Apr 1;36(7):2251-2252. doi: 10.1093/bioinformatics/btz859.
5
GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database.
Bioinformatics. 2019 Nov 15;36(6):1925-7. doi: 10.1093/bioinformatics/btz848.
6
Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2.
Nat Biotechnol. 2019 Aug;37(8):852-857. doi: 10.1038/s41587-019-0209-9.
7
PCR-based quantification of taxa-specific abundances in microbial communities: Quantifying and avoiding common pitfalls.
J Microbiol Methods. 2018 Oct;153:139-147. doi: 10.1016/j.mimet.2018.09.015. Epub 2018 Sep 26.
8
Dynamics of microbial populations mediating biogeochemical cycling in a freshwater lake.
Microbiome. 2018 Sep 18;6(1):165. doi: 10.1186/s40168-018-0556-7.
9
MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis.
Microbiome. 2018 Sep 15;6(1):158. doi: 10.1186/s40168-018-0541-1.
10
Chesapeake Bay's water quality condition has been recovering: Insights from a multimetric indicator assessment of thirty years of tidal monitoring data.
Sci Total Environ. 2018 Oct 1;637-638:1617-1625. doi: 10.1016/j.scitotenv.2018.05.025. Epub 2018 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验