Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
Phys Chem Chem Phys. 2015 Sep 28;17(36):23559-64. doi: 10.1039/c5cp04022a.
We examine the temperature dependence of the interfacial molecular structure at the water-air interface by combining experimental and simulated sum-frequency generation (SFG) spectroscopy. The experimental SFG spectra of the OH-stretching mode show a decrease in the amplitude at ∼3300 cm(-1) with increasing temperature, while the 3700 cm(-1) 'free OH' SFG feature is insensitive to temperature changes. The simulated spectra are in excellent agreement with experiment. A comparison between interfacial SFG spectra and bulk infrared/Raman spectra reveals that the variation of the SFG signal due to the temperature change is not caused by a temperature-dependent OH bond orientation of the interfacial water molecules, but can be fully accounted for by the temperature dependence of the optical response of water. These results indicate that while the thickness of the interfacial region varies with temperature, the molecular organization of interfacial water at the water-air interface is surprisingly insensitive to temperature changes.
我们通过结合实验和模拟的和频发生(SFG)光谱学来研究水-空气界面的界面分子结构随温度的变化。实验 SFG 光谱中 OH 伸缩模式的幅度在约 3300cm(-1)处随温度升高而降低,而 3700cm(-1) 的“游离 OH”SFG 特征对温度变化不敏感。模拟光谱与实验非常吻合。将界面 SFG 光谱与体相红外/Raman 光谱进行比较表明,由于温度变化导致的 SFG 信号变化不是由界面水分子 OH 键取向随温度的依赖性引起的,而是可以完全由水的光学响应随温度的变化来解释。这些结果表明,尽管界面区域的厚度随温度变化而变化,但水-空气界面的界面水分子的分子组织对温度变化具有出人意料的不敏感性。