Suppr超能文献

状态估计的新趋势:从模型驱动到混合驱动方法

The New Trend of State Estimation: From Model-Driven to Hybrid-Driven Methods.

作者信息

Jin Xue-Bo, Robert Jeremiah Ruben Jonhson, Su Ting-Li, Bai Yu-Ting, Kong Jian-Lei

机构信息

Artificial Intelligence College, Beijing Technology and Business University, Beijing 100048, China.

China Light Industry Key Laboratory of Industrial Internet and Big Data, Beijing Technology and Business University, Beijing 100048, China.

出版信息

Sensors (Basel). 2021 Mar 16;21(6):2085. doi: 10.3390/s21062085.

Abstract

State estimation is widely used in various automated systems, including IoT systems, unmanned systems, robots, etc. In traditional state estimation, measurement data are instantaneous and processed in real time. With modern systems' development, sensors can obtain more and more signals and store them. Therefore, how to use these measurement big data to improve the performance of state estimation has become a hot research issue in this field. This paper reviews the development of state estimation and future development trends. First, we review the model-based state estimation methods, including the Kalman filter, such as the extended Kalman filter (EKF), unscented Kalman filter (UKF), cubature Kalman filter (CKF), etc. Particle filters and Gaussian mixture filters that can handle mixed Gaussian noise are discussed, too. These methods have high requirements for models, while it is not easy to obtain accurate system models in practice. The emergence of robust filters, the interacting multiple model (IMM), and adaptive filters are also mentioned here. Secondly, the current research status of data-driven state estimation methods is introduced based on network learning. Finally, the main research results for hybrid filters obtained in recent years are summarized and discussed, which combine model-based methods and data-driven methods. This paper is based on state estimation research results and provides a more detailed overview of model-driven, data-driven, and hybrid-driven approaches. The main algorithm of each method is provided so that beginners can have a clearer understanding. Additionally, it discusses the future development trends for researchers in state estimation.

摘要

状态估计广泛应用于各种自动化系统,包括物联网系统、无人系统、机器人等。在传统的状态估计中,测量数据是瞬时的并实时进行处理。随着现代系统的发展,传感器能够获取越来越多的信号并进行存储。因此,如何利用这些测量大数据来提高状态估计的性能已成为该领域的一个热门研究问题。本文综述了状态估计的发展及未来发展趋势。首先,我们回顾基于模型的状态估计方法,包括卡尔曼滤波器,如扩展卡尔曼滤波器(EKF)、无迹卡尔曼滤波器(UKF)、容积卡尔曼滤波器(CKF)等。还讨论了能够处理混合高斯噪声的粒子滤波器和高斯混合滤波器。这些方法对模型有很高的要求,而在实际中获取准确的系统模型并非易事。这里还提到了鲁棒滤波器、交互多模型(IMM)和自适应滤波器的出现。其次,介绍了基于网络学习的数据驱动状态估计方法的当前研究现状。最后,总结并讨论了近年来获得的混合滤波器的主要研究成果,这些混合滤波器结合了基于模型的方法和数据驱动的方法。本文基于状态估计研究成果,对模型驱动、数据驱动和混合驱动方法进行了更详细的概述。给出了每种方法的主要算法,以便初学者能有更清晰的理解。此外,还讨论了状态估计领域研究人员的未来发展趋势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de0f/8002332/a16a7ec4fa7f/sensors-21-02085-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验