Zhu Wei, Wang Wei, Yuan Gannan
College of Automation, Harbin Engineering University, No. 145 Nantong Street, Harbin 150001, China.
Sensors (Basel). 2016 Jun 1;16(6):805. doi: 10.3390/s16060805.
In order to improve the tracking accuracy, model estimation accuracy and quick response of multiple model maneuvering target tracking, the interacting multiple models five degree cubature Kalman filter (IMM5CKF) is proposed in this paper. In the proposed algorithm, the interacting multiple models (IMM) algorithm processes all the models through a Markov Chain to simultaneously enhance the model tracking accuracy of target tracking. Then a five degree cubature Kalman filter (5CKF) evaluates the surface integral by a higher but deterministic odd ordered spherical cubature rule to improve the tracking accuracy and the model switch sensitivity of the IMM algorithm. Finally, the simulation results demonstrate that the proposed algorithm exhibits quick and smooth switching when disposing different maneuver models, and it also performs better than the interacting multiple models cubature Kalman filter (IMMCKF), interacting multiple models unscented Kalman filter (IMMUKF), 5CKF and the optimal mode transition matrix IMM (OMTM-IMM).
为提高多模型机动目标跟踪的跟踪精度、模型估计精度和快速响应能力,本文提出了交互式多模型五阶容积卡尔曼滤波器(IMM5CKF)。在所提算法中,交互式多模型(IMM)算法通过马尔可夫链对所有模型进行处理,以同时提高目标跟踪的模型跟踪精度。然后,五阶容积卡尔曼滤波器(5CKF)通过更高阶但确定性的奇数次球面容积规则来评估表面积分,以提高IMM算法的跟踪精度和模型切换灵敏度。最后,仿真结果表明,所提算法在处理不同机动模型时表现出快速且平滑的切换,并且其性能也优于交互式多模型容积卡尔曼滤波器(IMMCKF)、交互式多模型无迹卡尔曼滤波器(IMMUKF)、5CKF以及最优模式转移矩阵IMM(OMTM-IMM)。