Suppr超能文献

一种使用交互式多模型-无迹卡尔曼滤波器(IMM-UKF)算法和灰色神经网络的经济高效车辆定位解决方案。

A Cost-Effective Vehicle Localization Solution Using an Interacting Multiple Model-Unscented Kalman Filters (IMM-UKF) Algorithm and Grey Neural Network.

作者信息

Xu Qimin, Li Xu, Chan Ching-Yao

机构信息

School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China.

California Partners for Advanced Transportation Technology (PATH), University of California, Berkeley, CA 94720, USA.

出版信息

Sensors (Basel). 2017 Jun 18;17(6):1431. doi: 10.3390/s17061431.

Abstract

In this paper, we propose a cost-effective localization solution for land vehicles, which can simultaneously adapt to the uncertain noise of inertial sensors and bridge Global Positioning System (GPS) outages. First, three Unscented Kalman filters (UKFs) with different noise covariances are introduced into the framework of Interacting Multiple Model (IMM) algorithm to form the proposed IMM-based UKF, termed as IMM-UKF. The IMM algorithm can provide a soft switching among the three UKFs and therefore adapt to different noise characteristics. Further, two IMM-UKFs are executed in parallel when GPS is available. One fuses the information of low-cost GPS, in-vehicle sensors, and micro electromechanical system (MEMS)-based reduced inertial sensor systems (RISS), while the other fuses only in-vehicle sensors and MEMS-RISS. The differences between the state vectors of the two IMM-UKFs are considered as training data of a Grey Neural Network (GNN) module, which is known for its high prediction accuracy with a limited amount of samples. The GNN module can predict and compensate position errors when GPS signals are blocked. To verify the feasibility and effectiveness of the proposed solution, road-test experiments with various driving scenarios were performed. The experimental results indicate that the proposed solution outperforms all the compared methods.

摘要

在本文中,我们提出了一种适用于陆地车辆的经济高效的定位解决方案,该方案能够同时适应惯性传感器的不确定噪声并应对全球定位系统(GPS)信号中断的情况。首先,将三个具有不同噪声协方差的无迹卡尔曼滤波器(UKF)引入交互式多模型(IMM)算法框架中,形成了本文提出的基于IMM的UKF,称为IMM-UKF。IMM算法能够在这三个UKF之间进行软切换,从而适应不同的噪声特性。此外,当GPS可用时,并行执行两个IMM-UKF。一个融合低成本GPS、车载传感器以及基于微机电系统(MEMS)的简化惯性传感器系统(RISS)的信息,而另一个仅融合车载传感器和MEMS-RISS的信息。这两个IMM-UKF状态向量之间的差异被视为灰色神经网络(GNN)模块的训练数据,该模块以在样本数量有限的情况下具有较高的预测精度而闻名。当GPS信号被阻断时,GNN模块能够预测并补偿位置误差。为验证所提解决方案的可行性和有效性,进行了各种驾驶场景下的道路测试实验。实验结果表明,所提解决方案优于所有对比方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69d1/5492038/5fb007699e64/sensors-17-01431-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验